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PARAMETRIC AND NON-PARAMETRIC SCHEMES FOR DISCRETE

TIME SIGNAL DISCRIMINATION

Chapter 1

Introduction
In this thesis we consider the problem of discriminating between classes of discrete time

signals. The simplest case of discrete time signal discrimination is the binary discrimination

problem. In this case. a random discrete time signal Is observed and must be classified

into one of two categories. Typically the discrimination method Is designed to optimize some

measure of performance; this measure of performance is usually related to the probability

of error and/or the number of samples used to make a decision. The binary discrimination

problem is faced often in radar applications. where the receiver must decide whether the

observed signal is from a target of interest or a decoy. Throughout this thesis, we present

results on signal discrimination for arbitrary classes of data without assuming what the data

represent or from what structure/implementation they are obtained. However. we shall often

try to relate our results to the problem of binary discrimination faced by a radar receiver.

We refer to the two classes of signals from which the observed data originate as hy-

potheses H1 and H0 . The observed data sequence is denoted as {Z 3 } =1 . Under hypothesis

Hi. i = 0, 1. (Le. hypothesis Hi is true.) the observed data sequence has the n-dimensional
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probability density function (pdl fA(zI, 22,..., z,). More specifically, we consider

H1 : {Z}'.., has pdf f 1 (z, z2 ,..., z,.) = fY(z)

H 0 : {Z}!. 1 haspdffo(z,z 2,...,z,) = fo(z)

where z represents the n-tuple (z , z2 ,. .. , z,,). Note that we do not constrain the data to be

independent: various assumptions of the correlation between samples will be made later in

this thesis.

If the n-dimensional pdfs under each hypothesis were known by the discriminator

designer, a likelihood ratio test could be Implemented. The likelihood ratio test is of the form

1, fl (Z)
d(z) = ( (1.2)

ho(z)O' If 7o-(z < 77

where 17 is a constant to be determined. Hypothesis Hi is chosen by the discriminator when

d(z) = i. i = 0, 1. Likelihood ratio tests are well known and optimal in the Bayes. Neyrnan-

Pearson. and minimnax senses[ 1): the choice of 17 depends upon which criterion the designer

chooses to optimize. However. we assume that the n-dimensional pdfs are not known.

It is further assumed that the data sequence is strictly stationary that is, the statistics

do not -. ry with time:

fA(zl,z2,...,z,) = fi(zk+1,zk+2,... ,zk+n) i = 0, 1; k arbitrary. (1.3)

As mentioned above, we do not constrain the data to represent any specific signal.

However, for the radar problem, some possibilities are samples of the envelope detector

output, matched filter output, or even phase data. Figure 1.1 illustrates a scheme for dis-

criminating between radar targets by using envelope samples.

The radar uses a simple pulse modulated waveform. The pulse modulator block gen-

erates the pulsed waveform. This In turn is fed into the transmitter to be modulated to radio

2
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Figure 1.1: A Tracking Radar System Employing a Discriminator



frequency (RF). This signal is then input to the duplexer which isolates the transmitter and

receiver during transmission and reception. During the transmission, the receiver is effec-

tively disconnected from the antenna, while during reception the transmitter is disconnected

from the antenna. The pulsed radio frequency signal is then radiated through the antenna.

If the antenna is pointing at an object, some portion of the signal may be reflected towards

the antenna. By this time, the duplexer has switched the antenna to the receiver circuitry.

The Incoming waveform is amplified by a radio frequency amplifier and then mixed to an

intermediate frequency (IF). This signal is then passed through the matched filter of the IF

amplifier to maximize the signal to noise ratio (SNR). The output of this block is then enve-

lope detected. A portion of the envelope signal is routed through the video amplifier and into

a display: either an A-scope or a PPI (plan position indicator.)

The other portions of the envelope signal are routed to the ADT (automatic detection

and tracking) circuitry and to the discriminator circuitry. The ADT determines if targets are

present. Initiates track on new targets, and determines how to set the pointing angles of

the antenna. The ADT therefore communicates with the display circuitry and the antenna

control circiutry. The ADT also notifies the discriminator circiutry that a target has been

detected. The discriminator then begins its tests by obtaining samples of the envelope signal

In the time intervals corresponding to the target's position. When the discriminator makes a

decision, it can instruct the ADT to continue tracking the target (if it is a target of interest) or

to drop the target from track (if it is a decoy or a target of little interest.) Figure 1.2 illustrates

a method that a discriminator may possibly utilize in obtaining data samples. The figure is

a diagram of five pulse repetition intervals (PRIs.) The rectangular pulses represent the

pulse waveform to be modulated and transmitted. The random signal between the pulses

represents the envelope signal. The data samples Z0 , Z 1, Z 2 .... are obtained by sampling

4
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Figure 1.2: Extracting Data Samples from the Radar Return

the envelope signal within the range gate corresponding to the object being discriminated.

In Figure 1.2. only one sample per target per range bin Is obtained.

The above Implementation is Just one example of how a discriminator can be imple-

mented in a practical system. However. structure of the discriminator block was not detailed

in the above example. There are several approaches to designing the discriminator block.

Figure 1.3 Illustrates some possible approaches to designing a discriminator. The first ap-

proach Is to model the physics generating the data under each hypothesis. Then the pdfs of

the data under each hypothesis may be assumed or derived, thus allowing a discriminator

to be implemented. Another approach Is to collect actual data, estimate pdfs of the data

under each hypothesis. and then implement a discriminator. The last method is to collect

data. train a discriminator with a supervised learning algorithm via simulation, and then

implement the discriminator. The first approach may be very difficult and mathematically

intractable. The other two approaches are more easily adaptable to any problem since they

assume no model of the physics which generate the data sequence.

In this thesis, we consider all three of the above approaches to designing a discrim-

inator. In Chapter 2. it is assumed that marginal and bivartate pdfs of the data under

each hypothesis are known to the discriminator designer. Optimal memoryless quantizer

discriminators are designed using the marginal and btvariate pdfs (actually cumulative dis-
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Figure 1.3: Possible Approaches to Designing a Discriminator

tribution functions, denoted as cdfs). The discriminators use a test statistic of the form

Tj = Ej=l Q(Z,), where Q(x) is a quantization function chosen to maximize a suitable

performance measure. The approach used to design the discriminator corresponds to the

first approach of Figure 1.3 and is parametric since pdfs are assumed unavailable.

In Chapter 3 it is assumed that the pdfs are not known. The approach used to design

a discriminator in this chapter corresponds to the second approach in Figure 1.3. Non-

parametric estimates of the marginal and bivarlate pdfs of the data under each hypothesis

are formed and fed into the expressions for the optimal memnoryless quantzer discriminators

derived in Chapter 2. The estimates are formed by collecting data prior to the design of the

discriminator, the data are fed into kernel density estimators. The data for estimation are

denoted as

(1.4)

where i = 0, 1 denotes hypothesis H0 or H, respectively, where m = 0, 1 .... , M - I denotes
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the sample path number, and where j = 0, 1, 2,..., N - I denotes the sample number. Thus

under each hypothesis. we have M sample paths (Le. sequences) which are N data samples

long. It is assumed that the M sample paths are independent of each other. Throughout

this thesis we refer to the these data sequences as the training data.

In Chapter 4. the final approach to designing a discriminator Is considered. The

discriminators from Chapters 2 and 3 required only marginal and bivarlate pdfs due to

their memoryless property. However. it is suspected that memory Improves performance for

correlated data. In Chapter 4. discriminators which have a test statistic of the form T. =

i=K (ZK - i + , Zk-2+,... , Z ) are considered. To find the optimal nonlinearity y(). pdfs

of higher order than the bivariate pdfs would have to be assumed or estimated; the estimation

of the higher-order pdfs may not be practical and the assumption or derivation of such pdfs

may be mathematically intractable. To avoid the difficulty in obtaining these pdfs. multiple-

layer perceptron neural networks are trained to act as the nonlinearity 7/(X , X2 .... , X K)

using the back propagation algorithm.

It is likely that once a discriminator is implemented. it will encounter data from pdfs

different from those with which it was designed. Obviously, the designer wants the discrim-

inator to be robust to these conditions. In Chapter 5. some simulation resifts are presented

on the mismatch of the pdfs. These results give some indication of the robustness charac-

teristics of the discriminators presented in this thesis.

Note that all discriminator models in this thesis make decisions on the basis of se-

quential tests. These tests, upon obtaining a new data sample. either classify the sequence

or decide to obtain a new data sample. Sequential tests are used In situations requiring fast

and accurate decisions.

m~mmmmmmmmnmm l~ lmm ~n~mii 7



Discriminators using similar structures to the ones In this thesis can be implemented to

form decisions on the basis of fixed length blocks of data. However fixed sample size tests

are beyond the scope of this thesis.



Chapter 2

Memoryless Quantizer
Discriminators

In this chapter. we derive optimal memoryless quantizer discriminators for use in our bi-

nary discrimination problem. The data sequence is assumed stationary and m-dependent.

m-dependent means that, under Hi, Zk and ZI are correlatied for lk - 1I :_ mi and are

independent for Ik - II > mi. These discriminators operate on the data sequence {Z,0}i1

by computing the test statistic Tn = ',= Q(Zi). Q(x) is a quantizer function chosen to

maximize a suitable performance measure.

The test may be performed in either a block or sequential fashion. Both tests are

based on the fact that. as n tends towards Infinity, T, converges to a Gaussian distribution

with mean npi and variance nc 2. for i = 0, 1. corresponding to hypotheses H, and H0

respectively. Ai is defined by

yj(Q) = E,{Q(Z)}, i = 0,1 (2.1)

where Ei denotes expectation under hypothesis H,. a? Is defined by

Ci(Q) = r n-'Vari(Tn), i= 0,1 (2.2)
n00



and Is given by

a?(Q) = Var,(Q(Z,)) + 2 COVQ(ZI), Q(Zj+,)}. (2.3)
j=1

Vari and Covi denote variance and covarlance under hypothesis Hi, and mi Is the m-

dependence length under hypothesis Hi. 121 gives a proof using a central limit theorem

which shows that T, is asymptotically Gaussian under hypothesis Hi with mean njui and

aiance na?. provided that a; > 0.

Optimal quantization has been studied by others (see (31 and (41) for the related hy-

pothesis testing problem concerning the detection of weak signals in additive noise. These

employed block tests, where T, was compared to a decision threshold. Quantizer functions

were chosen to maximize the well known asymptotic relative efficiency (ARE.) Given two

detectors. W, and p2, the ARE of detector W, relative to detector W2 is defined as

ARE(l, 2) = lir e(a, 0, n), (2.4)
n,-oo ,0 -0

where e(a, 0, n) is the relative number of samples 2 required to achieve the same proba-

bility of detection that VI achieves for sample size n when both W, and V2 have false alarm

probability a and signal strength 0. Under certain regularity conditions (see (21.) the ARE

for two quantizer detectors has the form

ARE(Q,Q 2 ) = 7( 2577(Q2)' (2.5)

where the quantity i(Q) is the efficacy of the detector W using Q. and is given by
(f Qf1)2 (2.6)

()=a0('Q)•

Here. f' Is the derivative of the noise marginal probability density function with respect to

signal strength 0. The optimal quantizer is the quantizer which optimizes the ARE: this

quantizer also maximizes the efficacy.

10



14] derived the optimal quantizer for the weak signal detection case with independent

noise, while 121 derived the optimal quantizer for the m-dependent noise case. For the dis-

crimination problem. [5) has derived optimal nonlinearities which maximize signal to noise

type performance measures of the form

()(g) - (2.7)(Vl (g) + (1 - V)0-2(g))'

where v E [0, 1]. These detectors operated in a block fashion forming a test statistic T,,

I g(Zi) which was compared to a decision threshold.

Recently. 16) derived optimal nonlinearitles for use in a sequential discrimination

scheme. These sequential discriminators operated by forming a test statistic of the form

T, = F,', g(Zi). Another test statistic was formed, either as a linear expression of Tn:

-n = ATn + Bln. or as a quadratic expression of T,: Sn = ATn4 + BT, + Cn + D. Sn was

then compared to two decision thresholds: if the upper threshold. b. was exceeded. H1 was

declared. If Sn dropped below the lower threshold, a. H0 was declared. Otherwise. another

sample Z,+1 was obtained. T+j and Sn+1 were computed, and the threshold tests were

repeated. This continued until one of the thresholds was crossed. The nonlinearities were

chosen to minimize the average sample size required to terminate the test. This criterion

is important for the class of problems where a fast decision is needed as well as a reliable

decision (Le. small error probabilities.) 16) used the well known Wald thresholds [7 of

b = in ((1 - 0) /a) and a = In (fl/ (1 - a)). The corresponding optimal values of A and P

were A = 2(,l - Ito)/ (a + Oro) and B -2(ii -/I0) (/Jcr0 +,soa) / (? + 1 )

16) showed that the optimal nonlinearity solved a nonlinear integral equation: this was

the result of a more complex performance measure than (2.7). However 16 also considered

a suboptimal nonlinearity which solved a linear integral equation: this nonlinearity was

I1



the resuilt of a performance measure with the form of (2.7). The suboptimal nonlinearity

performed nearly as well as the optimal nonlinearity and was much easier to solve for because

of the linear integral equation. Since 151 and [61 have shown performance measures with

the form of (2.7) which result in good block and sequential discriminators, we only consider

quantizers that nmximize a performance measure of the form given in (2.7). Being consistent

with the subscript notation in [5]. we state our prc , n as finding a quantizer that maximizes

the performance measure

S4(Q) = (Q) 2  (2.8)

Now we define the notation used in this chapter. The quantizer function Q(x) is

defined as Q = (q,t). where q = (ql,q2,... ,qM)T is the quantization level vector and

t = (to,i, ... , tm) is an ordered breakpoint vector. These define Q(x) by

Q(X) = qk when x E (tk-l,tk], k = 1,...,M. (2.9)

With this definition of Q(x). we sometimes also use the notation S4(Q) = S4 (q).

2.1 Derivation the Mean and Variance for a Quantizer Function

To maximize the performance measure S 4 (q). the mean p, and variance a2 of the quantizer

function must be evaluated under both hypotheses (i = 0, 1). The mean of the quantizer is

12



given by

[E qkI(,4-,t(z)fi(z)dz

M +00-E k=qk 1( I4t- 1th'](z)fi(z)dz

- it " I qkfi,(z)dz

k=1 (2.10)

M
= E kPrifz E (tk-l,tkl]}

k=1I

ME 9k [Fi(tk) - Fi(tk-1)]

k=1

- qT(AFi) = (&F)Tq.

In the above expressions we used IA(x). the standard Indicator function defined as

IA (X) 1 for X EA (2.11)
0 for x A.

(2.10) also used (AFi). which Is defined as

.Fi(ti) - Fi(to)

(AF,) A F,(t2 ) - F(t 1 ) (2.12)

Fi(tM) - Fi(tM-I)J

Fi(x) Is the cumulative distribution function under hypothesis Hi and Pri(A) is the prob-

ability of event A occurring under hypothesis Hi. Note that. in the above integrals, we have

assumed that fi(z) = 0. for x < 0; thIs Is the result of the envelope detector output of the

radar system being always non-negative. The variance of the quantizer Q(Z) Is evaluated

13



as

a,? [Q] Vari [Q(Zi)] + 2 ECovi Q(Z), Q(Z+)I

-Ei [Q2(zi)] - /Ai [Q(Zi)]

mi

+ 2 1 Eif{[Q(Zi) - Ai [Q(Zi)]] [Q(Zj±1 ) - Ai [Q(Zl)II}
j=1

-Ei fQ2(Zi)} - ip2 LQ(ZOi) (2.13)

+ 2Z{~fE, [Q(ZI)Q(Z+1 )] _ A,2 [Q(Z 1 )I}
j=1

-Ei [Q 2(Z1 )] - (2mgi + 1)Ai 2 [Q(ZI)]

+2ZE Ei Q(Zi)Q(Zj+i)).
j=I

The power E, [Q 2(ZI )] is evaluated by

Ei [Q2(Z1 )) 0 jQ2(z)f(z)dz

J+00 M

00

jJO (2.=4

M (+I,

- q'f,(z)dz

k= 1

M

k=1

-q
T Piq

14



where the matrix Pi is defined as

ti~ diag{F,(ti) - Fi(tO), Fi(t2 ) - .F(ii),. ,Fi(t) -Fi(tM...)}. (2.15)

The squared term in (2.13) can be rewritten as

Md M
Ai [Q(Zl)] E qk [Fi(tk) -Fi(tk-.1)] 91 [Fi(ti) it-l

k1l

k=1 1=1

q qT(AFi)(AFi )T q-

Finally, the last term in (2.13) is given by

2ZEEi Q(Zi)Q(Zj+l)I = 2V'E EMM]qc~t- l(Z l~l-,lz+

m m

m. M M

= 2 E j E qkqlPri{Zl E (4k.14 k] AND Z3~i E (ti-i., til}

= qTf~jq,

(2.17)

where the mnatrix Pj is defined by its elements

m.

[pi ,] -4 2 E Pr,{Zi E (tk-.1 , t~] AND Z3~i E (ti-, tfl). (2.18)
j1l

So now the variance a'? [Q (Z)] can be obtained by combining equations (2.14) through (2.18)

15



to yield

a3 [Q(Z)] = qT( &Fi)q - (2m, + 1)q T (A&F)(A&Fi)T q + qlq

= q T [(,&Fi) - (2mi + 1)(AFi)(AFi )T + Pj} q (2.19)

= qT[p1j + tiq.

The matrix P~i is defined as

Pi S P, - (2m, + 1)(AF1)(A&Fi) T . (2.20)

2.2 Evaluation of the Performance Measure for a Quantizer Func-

tion

Using the expressions for pit tQ(Z)I and o, [Q(Z)] from the previous section the value of the

performance measure for a quantizer function is given by

V~+ (1 - a

[qT (AFI) - q T(F 0)) 2

- vqT(] , + tf1 q + (1 - vjqT[po + Fojq

[q[ F)- (A&Fo)]U2  (2.21)

qT([LiPl + f'i1 + (I - ,)[Po + to]] q

- [RAFi) - (A&Fo )ITq]2

-qT [vii+ t, ) + (1- _ t'Po + Flq

16



2.3 Evaluation of the Optimal Quantizer Function for Specified

Breakpoints

A necessary condition for the performance measure to be maximie is for the gradient with

respect to the level vector q to be zero. So we need to evaluate the gradient of equation

(2.21). This is given by

Vq S4(Q) = Vq [qT [(AF 1 ) - (AF)]] 2  1
[qT [V[i + ,I + -V)[IPo + Foll q

= 2 [q T [(AFI) - (AFo)]] [(AF) - (AFo)]
qT [v[PI + j?, + (1- V)[Po + tol]q

2 [qT [(AFI) - (AFo)] 2 [V[iP, + Fi] + (1 - V)[Po + Fo]q

[qT [V[PI + F1 ] + (I - u)[Po + Fo]]q] 2

where V. denotes gradient with respect to the level vector q. Now define q* as the vector

which maximizes S4 (Q).

q0 = arg{ max S4(Q)}. (2.23)
qERIM

The necessary condition is

[Vq Si(Q)] qq = 0. (2.24)q=o.

If [[PI + F1 ] + (1 - v)[Po + to]] is positive definite and qT[(AFI) - (AFo)] > 0 (i.e.

/i' > po). then equation (2.24) reduces to

[(4F 1 ) - (AFo)] - A(q°) ['[lP + F] + (1 - v)[Po + Fo] q. = 0 (2.25)

where the multiplier A(q) is defined as

A(q) qT[(AFI) - (AFo)] (2.26)
qT[tPI -+ F+ ] (I ( )[Po + Fo]q

17



So we hiave qO we h~"e+ F] + (1- v)[(o + to]] - [(AFi) - ( &F ° ) ]

A(qO)

as an expression for the optimal quantization function for fixed breakpoints. S4 (Q) remains

unchanged by scaling Q (Le. . 4 (Q) - S 4 (aQ). where a is a constant). This Implies that

A(q*) does not affect the value of S 4 (Q). so all solutions to (2.25) are equivalent. One

particular solution is where A(q*) = 1:

qO = [V[iP + F1 ] + (1 - V)[Po + to]] -'[(AFI) - (AFo)]. (2.28)

This is equivalent to

[tPi + F1 ] + (1 - V)[Po + Fo]]q - [(AFI) - (AFo)] = 0. (2.29)

The matrix [vF1 + (1 - v)Fo] has the form

[L,, + (1 - v)Fo) = diag{v [Fi(ti) - F1(to)] + (1 - v)[Fo(ti) - Fo(to)]

V [F(t 2)- F1 (t01)] + (1 - V) [Fo(t 2) - Fo(t)],..,

v [FI(tMf) - F(tm-1)] + (1 - v) [Fo(tM) - Fo(tM-1)]}. (2.30)

All terms of [VFI + (1 - v)Fo] are positive, since its terms are probabilities. so its inverse

+ (1 - v)toj -1 exists. This allows equation (2.29) to be written as

[vfF + (1- v)Fol [- v[P, + fFi] + (1 - v)[Po + Fo]lqO

- [V, + (1- ,)Fo]-[(AF,) - (AFo)] = 0. (2.31)

This can be simplified to

[+ k.1 q- - [vi + (1I- v)to} [(AF) (AFo)] = 0 (2.32)



where I Is the (MxM) identity matrix and where we define

k 4 -A [vt + (-)FJ [viP + (-V)iPo] (2.33)

The components of K 4 are given by

[f 4 ] -' = ~ (2. 34)
.. 3kL [V [F1 (ik) - F, (tk....)] + (1- V) (FO(ik) - F~k1f

We can define the vector b 4 as

4 [Fi + (1- v)Fo] -'[(AF) - (AFo)]

F(ti) - F(to) - Fo(t 1 ) + Fo(to)
u [Fl(ti) - F, (to)] + (1 - v)[[Fo(ti) - F0(to)]

FI(t 2 ) - F(tl) - Fo(t 2 ) + FO(tl) (2.35)
- u F(t 2 ) - F(tl)] + (1 - i/)IIFo(t2) - Fo(thl)

FI(tM) - F(tM-1) - Fo(tM) + F(tM-i)

v [FI(tM) - FI(tM-1)] + (1 - t) [(Fo(tM) - FO(tM-1)]

So we can rewrite equation (2.29) as (I + kI4 ] q b4 = 0

2.4 Evaluation of the Optimal Performance Measure

In this section. the optimal performance measure for fixed breakpoints is derived. This value

is the maximum a value a quantizer with the given breakpoint vector t can achieve. We start

with the performance measure
S4(Q) = S(q~t)) - [qTf(&F )..- (A'F°)J) 2.6

94(Q) =  4 (q(t)),q=q*= qT[v[131 + FI] + (1-V )[Po + F0]Iq q=q*. (2.36)

Now the expression for the optimal quantizer levels for fixed breakpoints.

qO= [V[p +. F 1 + (I - v)[po + to]] -[( r) - (AFo)] (2.37)
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is substituted into the above expression to yield

S4q=[((AF 1 ) - (4F0)]T[Iv[P1 +b F] +b ( 1- v)[Po + FoIV-z(AF1 ) - ( AFo)]]
94 (q°)=

[(AFI)- (AFo)]T IV[P1 + F1] + (1 - v)[Po + Foil -[(AF 1 ) - (AFo)]

= [(AF) - (AFo)IT [vt 1  + F1 + (1- 0)[Po + Fo]] [(AF 1) - (AFo)].

(2.38)

2.5 Sufficiency of the Solution (2.28)

The solution (2.28) has been showed to be a necessary condition for maximizing the perfor-

mance measure S4 (q). In this section. the Schwartz inequality is used to show that (2.28)

is also a sufficient condition for maximizing

s94 [)fl (q) - po(q)]2  (2.39)
S4 q)- w4v2(q) + (1 - L)o(q)(

For simplification purposes define

C A I[, + F1 ] + (1- v)IPo + Fol] (2.40)

and

v = [(AFI) - (AFo)]. (2.41)

By substituting these into the expression for S4 (q) we obtain

S4 (q)- [qTv] 2

qTCq

i[ l'][S(q°)1"" Tq-JL (2.42)

qTCq [vTqO2 .
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Now by the Schwrartz inequality. which for two vectors x. and z implies that (xTz) 2 <

XTXZTz. we obtain

S4 (q) qTVVTq(qo)TVVTq*
qTCqVTqovTqO

qTVjTq(q*)TvvTq*

qTCqvTqovTqo

qT vvTq(qo)Tv (2.43)

q'Cq(qO )Tv

T Vvq(qo)TV

qTCqOqTv.

Now by substituting the expression

Cl= [VI+ F1] + (1 - v,)[fo + to]] ('(AFi) - (AFo)] C 1 (2.44)

into the denominator of the above expression. we obtain

S4 (q) :5qT.vTq(qo )Tv
qTCClIvqTV

qT Tq(qo)TV

qTvqTv (2.45)

_qTvvTq(qo )TV

qTqvTv

=(qO)TV = S4 (q
0 ).

Thus we have now shown that the expression for optimal quantizer satisfies the necessary

and sufficient conditions for optimality.

2.6 Evaluation of Quantlzer with Optimal Levels and Breakpoints

Here we derive the quantizer function with optimal levels and breakpoints that maximizes

the performance measure 94(q). Specifically, we are maximizing the function S4 (qoikt)). We
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need to evaluated the gradient of the performance measure with respect to the breakpoint

vector,

S4(q'(t)) =

Otk0[ 4 0 ]TvP i +(-L)P + -o] [(AF 1) - (A Fo)I]

-- [(AFI) - (AFo)]T] [VPi + F 1] + (1 -t)[o + Fo,] [((FI) - (AFo)]

+[(AF 1 )- (AFo)I T [ i4 + F] + (1- v)[Po + to]] [(AFI) - (AFo)]

+ [(AFi) - (AFo)] T [V[P1 + F1 ] + (i-v)(io + to]]-' [ tf(AFi)- (AFo)]]

(2.46)

We use the fact for invertible matrices that -.- - and equation (2.46) to obtain

[ .[(AFI) - (AFo)]T] q0

_(qo) T [-L [v[P + F,] + (-v)[Po + toi] qO

+qT -- [(AFj) &F] (.7

This further reduces to

2(qo) T [- t[(AFi) - (AFo)]]

-(qo)T [- [VP + t + (1 - v,)[PO + tdq 0

=(q o) T [2-[(AFi) - (A&Fo)] - [ f!a.r + F11I + (1-v)Po + to~] qO0

(2.48)

So a necessary condition for the vector t to r'iaximlze the performance measure is

0= (qo) T [2 [-f(AFj)- (AFo)]]
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- [~~[~th +F]+I -)[P+Fo]]qO] ,fork= 1,2,3,...,M- 1. (2.49)

This car) be expanded into more detafl:

0

0

0 (qo)T 2 f(tk)- fo(tk)

flt)+ fO(tk)

0

0

0

0

0

(1-V)fO(tk) + Vf1 (tic)

(1-V)fO(tic) -f l 1(tk)

0

0.

[vPr +(I ~oq fork , 2,3,..., M-l1 (2.50)

0

0 2 f~k Ot) qo+qol qk~fl(tk) + qic(l - V)fO(tc)

2[fii,~ fo~ic) (q~+ q~1] - qk~iVfl(tc)qic+l(l - i')fO(tic)

0

L 0
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(IMPI + (1 - 1)#3'] qi for k = 1,2,3,...,M -1 (2.51)

2.7 Numerical Results

In this section. we evaluate the performance of the memoryless quantizer discriminators

via computer simulation. Although the optimal quantization functions may be computed

for any m-dependent processes for which the marginal and bivarlate distributions of the

data are known under both hypotheses, we consider only the case typical to radar sys-

tems: p-mixing data from observations of the radar return envelope, p-mixing implies that

Cov{Zk, Zk+,.} : p,, where p, -- 0 as n -+ oo. We shall assume that the data are

samples of the radar return envelope, which is either from a target (hypothesis HI) or a

decoy (hypothesis HO.) Note that the radar has already detected the object (Le. the target

or decoy), but now -unt decide whether the return is from a target or decoy. Note that in

our problems we neglen:t the possibility of detecting clutter or other objects. We define the

probability offalse alarn as the probability that the discriminator declares a decoy to be the

target. The probabiity of miss is the probability that a target is declared a decoy. Thus the

probablty of detection Is the probability that the discriminator declares a target a target.

We consider two discrimination cases (refer to Table 2. 1). Under Case I. the target's

envelope samples have marginal pdfs which are lognormal. while the decoy's marginal pdfs

are Rayleigh. The observations under each hypothesis have matched means and powers.

For Case 2. both hypotheses have Rayleigh marginal pdfs. However, under Case 2. a 3dB

(HI vs H0 ) difference in power exists between the two hypotheses. The observations are

assumed stationary and p-mixing. Appendix C is a summary of the necessary marginal and
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Case 1 Lognormnal 000.32.
vs Rayleigh 0.013029

Case 2 Rayleigh 3 -0.130290,

vs Rayleigh 0.013029

Table 2.1I: Dsriation Cases

bivariate pdfs for the lognormal and Rayleigh processes.

The Rayleigh processes are generated by underlying Gaussian processes (ie. the

inphase and quadrature components.) We denote the envelope observations as f Zi }

The Rayleigh envelope process is generated by

i=V 2+ i = 1,2,3.... (2.52)

where f{Xj} 1 and f{Y,} are mutually independent Gaussian stationary p-mixing pro-

cesses. This implies that {Zj} is also stationary and p-mixing. The underlying Gaussians

are generated by

Xj= pX,.... +,/ VTT7Vj

I', = pY...I + V/r 2W, for i = 2, 3,.. (2.53)

with

Xa=

=, awl (2.54)

where {V}0 and {W,) *1 . are mutually independent sequences of i.i.d. (independent

and identically distributed) zero mean/unit variance Gaussian random variables, a is the
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standard deviation of the underlying Gaussians. while p is the correlation coefficient for

adjacent samples. Thus the underlying Gaussians are stationary p-mixing processes with

correlation coefficient p for adjacent samples.

The correlation coefficient p is related to the decorrelation time r (see Table 2.1) in the

following manner: i" is defined to be the time it takes for the correlation coefficient between

the first sample and another sample to decrease by a factor of e- 1 . In our simulations, we

assume that they are uncorrelated. when the correlation coefficient between the first and

j-th radar sample drops below 0. 1. Since the underlying processes are Gaussian. they will

also be independent. Thus we can assume m-dependence and define m 0 and m, as the

number of samples under H, and H0 respectively it takes the correlation to drop to below

0.1. respectively.

For very large targets. the radar return envelope samples are often approximated by

a lognormal process. Our lognormal process Is simulated by exponentiating an underlying

Gaussian process:

Z, = exp(Xi + p), i = 1,2,3,... (2.55)

where Xi is generated in the same manner as equations (2.53) and (2.54). Unlike the

Rayleigh processes which have underlying Gaussians with zero mean. the underlying Gaus-

sians for the lognormal process may have a mean M.

To generate the quantizer functions, the marginal cdfs for each hypothesis are re-

quired. To compute the matrlcies P1 and Po. the sum of bivariate cdfs over the m-dependence

interval must be computed for each hypothesis. Specifically. the sums F( : + 1+)(,y)

must be computed for i = 0, 1 corresponding to H, and H0 . where F("j+')(x, y) is the joint

cdf for samples Z, and Z,+, and m, is the m-dependence length for hypothesis Hi. The

decorrelation times listed in Table 2.1 Imply that the m-dependence lengths are 300 and
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30 for HI and H0o, respectively. The Rayleigh and lognormal marginal and sum of bivarlate

pdfs for both Case I and Case 2 are evaluated at a discrete grid of evenly spaced points.

These points are chosen to lie In the support of the marginal density - that is the maximum

and minimum sample values are computed so that the probability that a sample exceeds the

maximum value of the support or falls below the minimum value of the support is 0.00005.

301 grid points are used over the support.

For each case. three classes of quantization functions are generated. All quantization

functions are chosen to maximize the performance measure

S3(Q) = [ _ 0121/[2 + a021. The first class of quantizers have uniform breakpoints and

optimal levels. The second class of quantizers have optimal breakpoints and optimal levels.

Finally, the third class of quantizers were obtained by quantizing a continuous nonlinearity.

The continuous nonlinearity is quantized by

g(to), if < to

Q(z) _ [g(tj) +g(tj+i)]/2, lftj _ z < tj+, i = O,1,...,M - 1 (2.56)

g(tM), if X > tM

where t, are the breakpoints and where g(x) is the continuous nonlinearity which maximizes

the performance measure S3 (Q) (see 161). The quantizer functions with uniform breakpoints

and optimal levels are computed via equation (2.28). The quantizer functions with optimal

levels and optimal breakpoints are computed using equation (2.28) and a gradient search

technique over varying breakpoints. Appendix A supplies the some of the required deriva-

tives needed to compute the derivative of the performance measure for a gradient technique.

However, in the actual computations. our simulations used a finite difference gradient tech-

nique.

Quantization functions from the various classes are computed for various number

of levels. Tables 2.2 and 2.3 summarizes the quantization functions computed. For each
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2 0.0000716237 0.0000761859 0.0000814555

4 0.0000435368 0.0026132100 0.0003927096

8 0.0000047076 0.0004527053 0.0102431728

16 0.0008984112 0.0019421706 0.0110042309

32 0.0071742339 0.0092516430 0.0111641670

64 0.0101809436 0.0109332995

128 0.0112417946 0.0113493744

Table 2.2: Values of 9 3 for Case I Quantizers

quantization function listed In Tables 2.2 and 2.3, the corresponding performance measure

is also listed.

Figure 2.1 is a graph of the performance measure versus the number of quantization

levels for each quantization class. As expected, as the number of levels increases the per-

formance measure also increases. Also, the performance measure saturates as the number

of quantizatlon levels becomes very large. The results in Figure 2.1 are intuitively pleasing:

for a fixed number of quantization levels the quantizer with optimal breakpoints and optimal

levels has a greater performance measure than the quantizer with uniform breakpoint and

optimal levels, which has a performance measure greater than the quantized continuous

nonlinearity. This result Is expected. since the quantized continuous nonlinearity with M-

levels and uniform breakpoints is a subclass of the M-level quantizer functions with uniform
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iiufidationi Q uantized ~~if~n~~ ~~fiV
Levls______.... QUanie

2 0.0009132413 0.0009184310 0.0029278097

4 0.0028830939 0.0029171822 0.0029428345

8 0.0029869056 0.0029905122 0.0029954810

16 0.0029979991 0.0029982538 0.0029988189

32 0.0029994955 0.0029995113 0.0029996180

64 0.0029998175 0.0029998184

128 0.0029998948 0.0029998948

Table 2.3: Values of S3 for Case 2 Quantizers

breakpoints and quantizers with M-levels and uniform breakpoints are subclass of quantiz-

ers with M-levels.

Typical quantization functions are shown m Figures 2.3 to 2. 10. Figure 2.3 is the 128-

level uniform quantizer for Case 1. The 8-level uniform quantizer and the 8-level quantized

continuous nonlinearity do not have the abrupt changes for small and large z values that the

128-level quantizer has. But the optimal 8-level quantizer comes close to the shape of the

128-level quantizer. The differences for the quantizers for Case 2 are also similar. Note that

the general shape of the quantized nonlinearity in Figure 2. 10 seems to be different from the

other quantizers for Case 2. But note the the general shape of the quantizer is the same -

it differs only by a scalar constant. (Note a quantizer may be scaled without changing the

performance.)
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The discriminator structure Is depicted in Figure 2.11. A maximum number of sam-

ples per test criterion was added to the sequential test for practicality. For Case I discrim-

inators. the maximum number of samples permitted was 2000. For Case 2. the maximum

number of samples permitted was 4000. Each discriminator was tested using random data

sequences. Also, each case was evaluated with the desired error probabilities a = 3 = 10-2

and a = = 10 - 3 . When the discriminators were evaluated with a = # = 10- 2 as the

desired error probabilities, 1000 random sample paths from each hypothesis were utilized.

For the discriminators designed for a = = 10- 3. 10000 random sample paths from each

hypothesis were utilized.

Figures 2.12 through 2.15 are examples of simulated paths from each hypothesis.

Tables 2.4 through 2.7 summarize the results from the simulations for the quantizer dis-

criminators. Listed for each discriminator is the probability of miss, probability of detection,

expected number of samples to make a decision, and the performance measure. Examining

the results one can see that generally, as the number of quantization levels increase, the

performance of the discriminator improves.

Examining the results from Case 1 we see that the minimum number of quantization

levels for a uniform quantization function to result In good performance was 32. The quanti-

zation function with 32 levels designed for P1 = P," - 10-2 had Pj=0.003. Pd=0. 9 9 1, and

an average sample number of 516. The quantization functions with less levels had Pf=l.

The quantizer function with optimal breakpoints and levels required only 8 quantization

levels to result in reasonable performance, the quantized continuous nonlinearity required

32 levels to yield reasonable performance. For the Case I quantizer discriminators with

desired P1 = P.. = 10- , error probabilities were slightly less than those of the quantzer

discriminators with P1 = P, - 10- 2 . but the average sample numbers increased: this is
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expected since the decision thresholds move farther apart for smaller desired error proba-

bilities. For Case 2. the minimum number of quantization levels for good performance is 4

for both optimal and uniform quantization functions.
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Figure 2.3: 128-Level Uniform Quantizer Function for Case 1
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2 1.0 1.0 1997 0.0000761859

4 1.0 1.0 1998 0.0002613210

8 1.0 0.996 1986 0.0004527053

16 1.0 0.976 1573 0.0019421706

32 0.003 0.991 516 0.0092516428

64 0.0 0.985 527 0.0109332995

128 0.0 0.988 537 0.0113493742

Optimal ~ '~

2 1 1 1997 0.0000814555

4 1 0.998 1983 0.0003927096

8 0 0.995 665 0.0102431725

16 0 0.984 541 0.0110042309

32 0 0.987 535 0.0111641665

.......... .............. .....:  :i'  .T '  ' ': l i  ' : .. .......... ... .

2 0 0.007 1595 0.0000716237

4 0 0 2000 0.0000435368

8 0 0.191 2000 0.0000047076

16 1 0.965 1928 0.0008984112

32 0.025 0.972 617 0.0071742339

64 0 0.977 473 0.0101809439

128 0 0.983 488 0.0112417950

Table 2.4: Results for Case I Quantizers for desired P = P_ = 10- 2
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2 1.0 0.99 1997 0.0000570159

16 1.0 0.9873 1790 0.0019421706

32 0.0 143 0.9875 754 0.0092516428

64 0.0 0.9881 779 0.0109332995

128 0.0 0.9896 782 0.0113493742

2 1 1 1999 0.0000814555

4 1 1 1998 0.0003927096

8 0 0.9946 963 0.0 102431725

16 0.0001 0.9858 794 0.0110042309

32 0.0001 0.9895 783 0.0111641665

Quantized. g ' lV \ '~~-'

2 0 0.0003 1586 0.00007 16237

4 0 0 2000 0.0000435368

8 0 0. 1900 2000 0.0000047076

16 1 0.9902 1999 0.0008984112

32 0.0838 0.9773 884 0.0071742339

64 0.0016 0.9816 694 0.0101809439

128 0.0001 0.9862 719 0.0112417950

Table 2.5: Results for Case 1 Qua&ntixers for desired P1  p P= 10-3
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16 0.002 0.994 2332 0.002917822

32 0.003 0.996 2332 0.002999511

46 0.015 0.996 233 0.00294234

82 0.003 0.996 2333 0.0029951480

6 0.002 0.997 2321 0.0029988189

328 00 0.995 2336 0.002999819

4 0.731 0.999 2420 0.002883090

8 0.012 0.999 2375 0.002948905

16 0.003 0.997 2336 0.0029979990

32 0.001 0.996 2331 0.0029994954

64 0.002 0.998 2338 0.00299986174

128 0.003 0.994 233 0.002999948

Table 2.8: Results for Case 2 Quantizers for desired P1 =pm = 10-2

40



2 0 0.91 2658 0.00099018410

16 0 0.9922 2668 0.0029982539

32 0.0001 0.9929 2663 0.0029995114

64 0 0.99 17 2662 0.0029998184

128 0 0.99 19 2660 0.0029998949

2 0.9625 0.9996 2404 0.0029278097

4 0.0179 0.9980 2680 0.0029428344

8 0.0001 0.9916 2659 0.0029954809

16 0.0001 0.9908 2665 0.0029988189

2 00.4243333 0.000913241 3

4 0 0.99 12 2692 0.0028830940

8 0 0.9923 2670 0.0029869056

16 0 0.9924 2659 0.0029979990

32 0 0.9938 2662 0.0029994954

64 0 0.9930 2666 0.0029998174

128 0 0.9924 2664 0.0029998948

Table 2.7: Results for Case 2 Quanthzer. for desired P1 p= Pm 1-
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Chapter 3

Estimation and
Discrimination

In the previous chapter we developed quantization functions which optimized the perfor-

mance measure 9 4 defined in equation (2.7). As mentioned in that chapter. the marginal

cdfs of the data under each hypothesis were required to solve for the quantization functions.

Also required were the sums F,7_, Fil'+)(Ty), where F~l'J+l)(z,y) was the Joint cdf of

the data for samples Z1 and Zj+ under hypothesis i. and mi was the m-dependence length

under Hi. For the continuous nonlinearities of 151161. pdfs rather than cdfs were required.

The results presented in the previous chapter were obtained by using the actual cdfs

of the various discrimination cases. However. in this chapter. it Is assumed that the cdfs

of the data are not known. This Is a more realistic problem, since In many engineering

problems the distributions of the data are not available. Therefore. In this chapter the pdfs

of the data will be estimated from the training data introduced in Chapter 1. and via nu-

merical integration techniques the cdfs will be obtained. Then quantization functions will be

computed and implemented in simulated discriminators for evaluation. Thus the feasibility

of estimation and discrimination techniques with memoryless quantlzer discriminators Is
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addressd for the discrimination cases of the previous chapter.

3.1 Kernel Density Estimators

For the estimation of our pdfs we utilize kernel density estimators. The idea behind these

estimators Is that each observation Xk is replaced by a function of Xk. Then the func-

tions are summed to yield the estimate of the density j(x). The kernel function produces a

smoothing effect and, if the kernel satisfies certain constraints, the estimate will also have

desirable properties. For our application, the main advantage of the kernel density estimator

over a histogram method is the smoothing characteristic. The kernel density estimators are

introduced in the following paragraph.

Given the data observations, X 1 , X 2 ,... ,X, it is desired to estimate the marginal

pdf of the data f(x). It is assumed that the process {X}',= is stationary. The kernel

density estimate, denoted j(x; n), where n represents the number of observations used by

the estimator, is defined as

fj n) 1 1 K k) (3.1)
nk=1

The function K(.) is called the kernel function and h, is usually referred to as the window

width or bandwidth parameter.

Under certain conditions the kernel estimate has been shown to be asymptotically

unbiased and strongly consistent. Asymptotically unbiased means that

lm E [(x; n)] f f(x) (3.2)
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and strongly consistent means that

lim f(x;n) = f(x). (3.3)
nt-*00

These two characteristics are desireable for an estimator since they imply that more obser-

vations mproves the estimator's accuracy.

181 shows that, if X 1 , X2 ,... ,z, are independent and Identically distributed, and if

1) K(.) is a density. that is f0 -K()dx = 1 and K(z) 0, Vx.

(2) m IxIK(x) = 0

(3) sup, K(z) <00

(4) limn-,o h. = 0

(5) 11m.,.. nhn = 00

(6) =i exp(-anhn) < 00, Vc > 0

then

lim E [f(x; n)] -f(x)nf-x)

and

Urm f(X;n)= f(z). (3.4)
n-oo

For various conditions, the kernel density estimators have also been shown to be

asymptotically unbiased and consistent In the quadratic mean sense for asymptotically In-

dependent/uncorrelated data (see (91). Quadratic mean consistent means that

lim E ((x; n) - f(.)) = 0. (3.5)

One case of asymptotic independence used in 19] that is of interest to our problem is

strong-mixing. Strong-mixing is now defined. Consider a continuous time random process

X(t). Let .b = a(X(t), a < t < b) denote the a-algebra of events in Y generated by the
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random variables {X(t), a < t < b}. -oo < a < b < oo. The stationary process X(t) is

strong-mxing. if for r > 0.

sup IP(AB] - P[A]P[B]I = a(r)
AEF°_.Q, BEr '

where

lim a(r) = 0. (3.6)

a(r) characterizes the mixing rate and is referred to as the mixing coefficient. The above

definition basically states that two non-intersecting events A and B, which are asymptotu-

cally separated. are asymptotically Independent. We assume that the data Xi, X 2 ,. . X

are observations of the process X(t) obtained by uniform sampling.

19] shows that if

(1) K(') Is a density. that is f oo K(x)dx = 1 and K(x) 0, Vx

( 2) lim2 . K(x) = 0

( 3) sup_- K(x) < oo

(4) limn- hn = 0

( 5) lim-. nhn = 00

(6) fo[a(r)l~dT < oo. for 0 < q < 2

then

Jm E [f(z;n)] = f(x)

and
2

lim E (f(x;n) - f(T)) = 0. (3.7)
" -00 \

This result is useful to our problem in Chapter 2. where we assumed that our process was

m-dependent (Le. Xk and X1 have known correlation for Jk - 11 _< m. while Xk and X1
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are independent for [k - 11 > m.) Since an rm-dependent process satisfies (3.6). It is also a

strong-mxing process. Therefore the results of (91 are useful for our problem.

For the bivarlate kernel density estimators, vector observations of the form X =

(X 1 , X 2 ) T are required. Given the observations. X1 , x 2 ,..., Xn. the kernel density estimate

of the bivarlate pdf f(x) is obtained by

f(x;n) = L n K - k. (3.8)
nk=l

For independent identically distributed vectors, the estimator of (3.8) is also unbiased

and strongly consistent [81. That is. if

(1) K(-) Is a density on R 2

( 2) limIxII.... ItxI 2K(x) = 0

( 3) supXER2 K(x) < oo

(4) limn...a hn = 0

(5) lim._. nhn = 00

(6) , exp(-anhn) < 00, Va > 0

limE ff(x;n)] - (x)

and

lim f(x;n) = f(x). (3.9)
n-.co

3.2 Implementation of Kernel Density Estimators

To estimate our pdfs. we utilize the training data. Denote the estimates of the marginals

as i(x; n) and fo(x; n). for HI and H0. respectively. Also denote the estimates of the
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bivarlate pdfs for samples X, and Xj+1 by fl'j(+ (z,y;n) and J+l)(xy;n). for H1

and Ho. respecaively. The kernel density estimates of the margLnals are obtained from the

training data by

j(x; N) = NMhNV E (x-c lh
1=0 k=O

and

fo(x;N)= NAhN E K. (z (3.10)
/=0 k=0 h

The bivariates are obtained by

(N-j)Mh Ni) =0 K0 k h(N-) ' h(Nv-j)

(N - j)Mh 2  MZI N-j- Kb X C10k Y -Ct(k+j (3.11)
(N-s) 1=0 k (N) h(=,

We choose the kernel functions to be Gaussian:

K.(x) = e -22 (3.12)

and

Kb(x,y) = -Le(2+2) (3.13)
27r

The window width is set as

h. = n- c, C E (0,1). (3.14)

Note that. In equations (3.10)and (3.11). we average over the M independent sample

paths of the training data. For the bivariates. we utilize pairs of observations, (" and k-

which are j samples apart. to estimate A(IJ+1) (x, y; n) under hypothesis Hi.

Since the estimators cannot practically be Implemented to estimate continuous func-

tions. we Implement them to estimate the pdfs at a discrete set of grldponts. Denote these
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grldpolnts as -oX,... ,G-1, where G is the total number of points. So. using (3.10) and

(3.11) we form the set of estimates

Aj(zj;N), fo(xi;N), fori = 0,1,...,G- 1 (3.15)

and

(.T"'~1 (i,x;N -j), f("j+ )(xjx,;N-j), for i,l - 0,1,... ,G - 1. (3.16)

Using equations (3.15) and (3.16) the estimators can easily be implemented in a

digital computer simulation. Some computers are now available with vector processing ca-

pabilities, which greatly decreases processing time. Equations (3.15) and (3.16) can be

easily vectorized as

f(xo; N) ]
f1 (zi;N) 1[' +,, +... + O,

f 1 (X(G-1); N)i

+ [191o + tO1', + + 1A-) +

+ [(M-I),O + 2(M-1),I + t(M-1),(N-1) (3.17)
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and

I (xo, xG1; N - j)

ft 1 (xl, x(G..); N - )

+i [IM , J+ 1 X(GM1), +2 N XjM) (N ])(18

wherewe hve dfine

vr=r] -, {JMh (X xil +3.9

ex {2. (zo 2
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and
{..-p i-- (( - -t2 + 30- t))2

-- 2
exp {'2 h-N. ((h,- rnl) + - c)) }i
exp + ( 1 - ))

exp {- ((1-,)2 + (3o - ,) }
exp 1 . ((XI _ C,) 2 + (31 - i )2)

XL (3.20)

N-.(,) -,,.) -',., } .hX
1  -)- c,+ 3 2)

2/i2 I- I X(G-1) - + (X )1,, (N-i)2

exp { 2Tl , ((X(G1) - ci 1) + ((G1 -Cn+) )

2(N-,) (

3.3 Numerical Results

In this section, the performance of memoryless quantizer discriminators based upon esti-

mated pdfs was evaluated via computer simulation. Equations (3.17) through (3.20) were

implemented in a Convex 210 mini-super computer capable of vector processing. The train-

ing data introduced in Chapter I was fed into the simulations to obtain estimates of the

necessary pdfs. These pdfs were then integrated via a Simpson's integration to result in the

cdfs required to derive the quantization functions. Next we consider the consistency of the

estimators.
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Figure 3.2: Nominal and Estimated Marginal Probability Density Functions

samples used by the estimator. Notice that, as the number of samples increases, the mean

squared error decreases (apparently exponentially towards zero). This result supports the

notion of quadratic mean consistency of the marginal density estimator for correlated data.

Due to computer processing limitations, the consistency of bivarlate pdf estimates could not

be checked. Figure 3.2 depicts the nominal density. the estimated density for 1.000 samples.

and the estimated density for 100.000 samples. Clearly the estimate for 100.000 samples is

closer to the nominal density than the estimate for 1.000 samples.
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With some confidence that the estimators produce reasonable estimates of the pdfs.

we now consider our discrimination cases. Using the training data introduced in Chapter 1

and the estimator simulations, estimates of the marginal and bivariate pfds for each hypoth-

esis of Case I and Case 2 were formed. These were computed over the interval (0.02.12) at

33 gridpoints for each case. The interval was chosen in the same manner as described in the

preceding paragraph. Figures 3.3 and 3.4 depict the nominal and estimated marginal pdfs

for each hypothesis for Case I and Case 2. respectively. For both the marginal and bivariate

estimators, the constant c in (3.14) was set to 0.1. The bivariate pdfs in equation (3.18)

were computed forj = 1,2,...,30. for H0 . and j = 1,2,..., 150. for HI. The choices of

the nmximum j were due to computation restrictions. A better method of choosing j would

have been to estimate the decorrelation time under each hypothesis and use those values

for the maxdmum choice of j.

After the marginal pdf estimates were obtained, cdfs were computed via Simpson's

integration. These bivariate pdfs were summed over j for each hypothesis and then inte-

grated in two dimensions (also using a Simpson's integration) to yield the necessary sums

of Joint cdfs required for the optimum quantization function.

Figures 3.5 and 3.6 show the quantization functions compited for Case 1 and Case 2,

respectively using the expressions given in Chapter 2. Comparing these to the 128-level

uniform quantIzers from Chapter 2 (see Figures 2.3 and 2.7). some similarities can be noted.

For the quantizer of Case I derived from estimated pdfs. note that the drop for small values

of x is still present. The sharp incline for large values of x Is still present for values of x

between 10.5 and 11.5. The function is relatively flat for values of x between 1 and 10.5.

However. note the drop for values of x for the last two quantization levels. This drop may be

attributed to the inaccuracies of the estimates of the pdfs in the tals of the densities. The
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Figure 3.3: Nominal and Estimated Marginal Probability Density Functions for Case 1

Case 2 quantizer also has Inaccuracies out at its tads. Table 3.1 lists the performance of

the niemoryless quanuzer discriminators using the functions of Figures 3.5 and 3.6. The

thresholds a and b were set for desired probabilities of error of 10-3. Despite having low

probabilities of error, these discriminators performed poorly when the average sample size

was considered. The Case 1 discriminator required an average of 3400 samples to make
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Figure 3.4: Nominal and Estimated Marginal Probability Density Functions for Case 2

a decision, while the discriminator for Case 2 required an average of 4270 samples for a

decision. The quantizers from Chapter 2. which were derived from nominal pdfs. required

an average number of samples of 782 and 2660 for Case 1 and Case 2. respectively, for

comparable probabilities of error.
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Figure 3.5: 32-Level Uniform Quantizer Function for Case 1
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Figure 3.6: 18-Level Uniform Quantizer Quantizer Function for Case 2
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Table 3.1: Results for Case 1 and Case 2 guantizers for Desired p1 = P_ = 10-3
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Chapter 4

Neural Network
Discriminators

The memoryless discriminators derived in the preceding sections can be easily implemented

In practice because they only require estimating first and second order probability density

functions of the observed process under H, and H0 . These memoryless discriminators use

nonlinear functions of one variable, with the form Q(x). which are chosen to maximize

a performance measure and are derived from first and second order probability density

functions. The nonlinearities are used In the test statistic of the discriminators as follows:

n

T, = Q(zj). (4.1)

Similar nonlinear functions, which have memory and have the form

"f(XI ,x2,. . ., K),

could be derived to optimize the same performance measures. Test statistics of the form

n

T"= 1_ -(ZK-,+j, ZK-2+j, . ZI) (4.2)
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could be computed using nonlinear funcUons of K variables. These functions, however.

would require higher-order probability density functions to be estimated(see 1101). In prac-

Uce. only first and second order probability density functions can be easily obtained with

reasonable accuracy for a small amount of training data.

In this section, we restrict the class of nonlinearitles, 7(xl,x2,., ,Kz), to have a

maximum absolute value - not an unreal limitation in a real system. Then we use a per-

ceptron neural network to form our nonlinearity and the back-propagation to minimize our

performance measure.

4.1 Perceptron Neural Networks

Perceptron neural networks are interconnected layers of simple processing units called per-

ceptrons. A perceptron is illustrated in Figure 4. 1. The perceptron takes an input vector

x = (X0, X,..., zX1 )T and a weghting vector w = (wo, w,..., WK- 1 )T and forms a dot

product

K-I

-w =xwT (4.3)
t=0

From the dot product. an offset value 0 is subtracted to get the result y = xwT -;: y is

then passed through a sigmoldal nonlinearity of the form

I (4.4)f(y) = I + Ie-Y (.4

The sigmoldal function Is shown In Figure 4.2. Note that. throughout this thesis. we use the

term perceptron and node interchangeably. We also refer to the offset value 0 as the node

offset value.
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Figure 4.1: A Perceptron

To gain an understanding of what a perceptron does. consider a perceptron with two

inputs. zO and xI. This implies that the perceptron has two weights. wo and wi. To simplify

the analysis, replace the sigmoidal curve with a hard quantizer

I, if X>O;

q(x) 0 { , otherwise. (45)

So the output of the perceptron is either a 0 or 1. Figure 4.3 shows the zo, z1 plane. The

perceptron with a hard quantlzer actually forms two decision regions separated by the line:

X,= -Uxo + -. (4.6)
W 1  W1

(xo,xl) pairs on one side of the line result in a perceptron output of 1. while pairs on

the other side of the line result in an output of 0. If the perceptron had K inputs, the
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decision region would become a hyperplane in RK. Note that the location of the hyperplane

separating the decision regions is determined only by the weights w and the offset value 0.

If the hard limiter above is replaced by the sigmoldal nonlinearity, then the decision

regions become soft. That Is. input vectors near the hyperplane have outputs that are near

1. Input vectors taken farther away from the hyperplane have outputs that approach 0 or

1. depending on which side of the hyperplane they lie.

More complex decision regions can be formed by utilizing multiple hyperplanes. De-

cision regions can be formed by using a perceptron to form each hyperplane of a complex

region. The output of each perceptron can then be fed into an AND gate - or. better yet, an-

other perceptron with weights and an offset appropriately set to simulate an AND function.

This leads to the concept of multi-layer perceptron neural networks.
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Figure 4.3: Decision Space for a Perceptron

Multiple-layer perceptron neural networks take the outputs of the perceptrons on a layer

and use them as inputs to the next higher level of perceptrons (see Figure 4.4.) Networks

of this type are usually called feed-forward neural networks. As demonstrated In the above

discussion, a single perceptron can only divide the decision space with a hyperplane. But it

has been shown that a two-layer perceptron neural netwuik can form any convex decision

region [I ]. A convex region is a region from which any two points can be connected by a

line which lies entirely within the region. A third layer of nodes can allow the network to

form any arbitrary decision region [1I1 (assuring enough nodes are allocated to the correct

layers.)

To form a desired decision region, the weights and node offset values for each node in

each layer of a neural network must be specified. This would be a difficult task even if the de-

cision region were known. But, for many problems. the decision region is not known because
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the statistical models of the data are not known. Training algorithms to form appropriate

decision regions exist for perceptron neural networks. These algorithms typically present the

training data to the network along with a desired response and the network weight values

and node offset values are adjusted to force the actual network response towards the desired

response. One such algorithm is the back-propagation algorithm. The back-propagation al-

gorithm is a gradient search method (searching over w and 8). whIch minimizes the square

er-or of the neural network outputs 1121. Note that the back-propagation algorithm requires

the nodes to have sigmoidal nonlinearites. (See Appendix B for a description of the back-

propagation algorithm.)
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4.2 The Neural Network Sequential Discriminator

As mentioned in the introduction to this chapter, optimal nonlinearlties

Y(XlT 2 ,. ,1K) could be derived for use in a discriminator using the test statistic

T" = Y'2=K 7(ZK-+j, ZK-2+j,..., Zj). [101 derived one step memory nonlinearities for

use In a block discrimination scheme to form the test statistic T, = '=2 g(Zj-,I Z).

However. in general these nonlinearities require knowledge (or estimation) of the pdfs of the

data of degrees higher than two. Nonlinearities in (101 require pdfs of the data of the fourth

degree under each hypothesis.

We now consider a suboptimal approach that utilizes perceptron neural networks and

yields excellent performance. We start by defining the structure of our sequential discrimi-

nator. Our discriminator utilizes a test statistic of the form

n

" = F tZ-~,Z-+, Z)

A two threshold test Is implemented, using the constants a and b. So. upon obtaining a new

data sample. Z,. the discriminator computes the test statistic Tn. If T, reaches L. then the

discriminator chooses H, and terminates the test. If Tn drops to &. then the test terminates

and the discriminator chooses H0 . If T lies between a and b. then another sample Zn+

is obtained. Tn+, is computed, and the entire test Is repeated. This process continues until

either a decision is made, or the N-th sample is reached. Upon obtaining the N-th sample.

r/N is computed and a one-threshold test is performed. Obviously T1 -I is Initialized to a

value in the interval (a, b).

We now restrict the class of nonlinearlUes of the form "f(X1, z 2 .. X'I) to have a
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range with maximum absolute value of r. That is. we require

17(zl, x2,..., XK)I r for all possible values of

the K - tuple (xl,x2,....,XK). (4.7)

This restriction leads to a suboptimal discriminator, but allows us to obtain a solution.

Now assuming that r. i. and b are all specified constants, the structure of our test

allows us to scale r. a. and b to get a test with a nonlinearity with a maximum absolute

value of 1. The newly scaled thresholds shall be denoted as a and b. This rescalLng of r to 1

allows us to utilize a perceptron neural network with a sigmold nonlinearity on its nodes in

the following paragraphs.

To find the optimal nonlinearity within our class, we first consider the optimal paths

that the test statistic T, can take under each hypothesis. By optimal path we mean the path

that T,, should take to minimize the number of samples needed to cross the correct threshold

under the appropriate hypothesis. Obviously the quickest path to reach a threshold Is when

the discriminator takes a step of magnitude I In the appropriate direction upon obtaining

each new data sample. That is. for each new data sample. the test statistic under H,

is incremented by + 1. while the test statistic under Ho is incremented by -1. If the data

sequence {Z}iz Is obtained by sampling some continuous process with a uniform sampling

period T, then the optimal path for T would lie on a straight line with slope + - for H)

and slope -+ for Ho. Figure 4.5 depicts these paths. Thus. for an ideal discriminator. (that

is a discriminator which never makes mistakes and always uses the minimum number of

samples possible), the statistics of the nonlinearity should be

E (ZIZ 2 .  ZK)] = 1
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Figure 4.5: Optimal Paths for Tn under Constraint of Maximum Slope

Eof-(ZI, Z2 ,..., ZK)j = -I

Var, -(ZI, Z 2,. .. , ZK)] = 0

Varo[-7(ZI, Z2,..., ZK)I = 0 (4.8)

We cannot expect a real discriminator to achieve the statistics of the above equations.

However, we can choose the nonlinearity to minimize some performance measure, such

as a mean squared error criterion of y about its desired values. We show that the back-

propagation algorithm can be used to minimize a related mean squared error criterion.

We form a nonlinearity by constructing a perceptron neural network with K inputs

zI, X2,.. • , K and two outputs which are functions of the inputs (and the weights/offsets

for each perceptron in the network). ol (zl,X 2 ,... ,XK) and o0 (xl :,X2 ,... ,ZK). To simplify
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the notaUon we denote the output nodes as o' and o0. During training (see Section 4.3). the

desired values of the output nodes are (10) for inputs from H0 and (01) for inputs from HI.

Our notation (x y) implies that o° = z and o1 = y. The nonlinearity. "(zI, X2,... ,ZK). Is

formed by

(X1,2,..., X) = o(XI,X2,...,XK) -00 (X,X2,...,XK),

or with simplified notation.

701 - 00. (4.9)

We wish the nonlinearity to be such that -y is close to values of 1 for inputs from

Hi and -1 for inputs from H0 . We choose a performance measure which involves the mean

squared error of o1 and o0 about their desired values for each hypothesis:

g5 = EO [(1- o0 )2 + (0- o) 2] + El [(0- o0 )2 + (1- o 1 )2]. (4.10)

We would like the weight and node offset values of each perceptron in our neural network

to have values which minimize equation (4.10).

We now try to relate this performance measure via an intuitive argument to perfor-

mance measures from the previous chapters. Comparing (4.10) to our performance measure

S3 from Chapter 2. we notice that they are similar. Recall that

[J =I[ - UO0],
[03 + ,2]" (4.11)

Effectively. by naxImizing equation (4.11). the expected values of the nonlinearity are sep-

arated. while the variances about the expected values are minimized. Minimizing our per-

formance measure Ss fixes the difference of the desired values, and minimizes a second

order moment. Both performance measures try to keep the expected values separated while

minimizing a second order moment about (or near) the expected value.
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Recall that the back-propagaUon algorithm 1121 is a gradient descent algorithm which

minimizes the performance measure

1
E=t Z-LCOP)- (4.12)
.

where tj Is the desired output for node j associated with Input pattern p. and o is the actual

value of the output node j associated with Input pattern p. Suppose we have P K-tuples

from each hypothesis available for training the neural network. We also have j = 0, 1 for

the two output nodes ol and o0 . respectively. We can rewrite (4.12) as

P-I I2P-I

E= f:(lo0)2+(0_o1)2} + , F 1(0 _o0)2+ (101) 2 }  (4.13)

where the first sum is over the H0 training patterns and the second sum Is over the HI

training patterns. The problem of minimizing i is equivalent to minimizing t scaled by a

constant. Thus minimizing (4.13) is equivalent to minimizing

2 - 1 I 2P-l
I_ =0)2+ (_1)2 }+ E Z{(0- o°)1 + (1- o')'). (4.14)

Now as P - o we have

- Eo [(1- 00)2 + (0 01)2] + E, [(0 - 00)2 + (1- 01)12 ] , (4.15)

which is our desired performance measure. Consequently. the back-propagation algorithm

is a reasonable algorithm to be utilized for our perceptron neural network nonlinearity.
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Using this nonlinearity we can form the test statistic

n

T, = Z 7(ZK.-I+j,ZK-2+j,. .,Zj). (4.16)
j=1

Figure 4.6 shows the Implementation of our test. The incoming data samples are passed

through a tapped delay line. The K taps are the Inputs to the perceptron neural network.

The difference of the outputs of the neural network is formed and added to the test statistic

Tj. The notation subscripts j correspond to the values associated with the jth data sample.

The sample number j is compared to N. If j reaches N. then a one threshold test is

performed (in this figure the threshold is 0.) If j is less than N. then a two threshold test is

performed.

4.3 Neural Network Training Phase

The neural network used in our sequential discrimination scheme operates on K-tuples

(ZK-I+, ZK-2+j,... , Zj), which are formed from the Incoming data sequence {Zj} _, on

which the discriminator must make a decision of H, or H0 . The neural network may have

two or three layers of nodes. but it will always have two output nodes on the output layer.

Figures 4.7 and 4.8 depict the two possible forms of the neural network considered in this

thesis.

The neural network is trained using the back-propagation algorithm and the training

data set. The training data set consists of M sample paths of length N from each hypothesis.

These training data are defined as (t. where i = 0, 1 denotes the hypothesis (HI or Ho).

m = 0,1,..., M - 1 denotes the sample path number. and j = 0, 1,...,N - I denotes the
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2 nodes on output layer

000 N, nodes on layer 1

000 Inodes on layerO0

K inputs

Figure 4.6: A Three Layer Perceptron Neural Network
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sample number. The desired responses for the neural network are (1 0) for H0 and (0 1)

for H1 . Our notation (a b) implies that the output node 0 outputs a and the output node 1

outputs b.

The training process proceeds as follows: The first K-tuple from the first sample

path from HO, ((0,o, (,0,. •, -- Co,Kl-) Is presented to the neural network inputs. The back-

propagation algorithm Is performed using (1 0) as the desired output. Then the first K-

tuple from the first sample path from Hi. (( 01, (1 -.-. , C.,K-1). is presented to the neural

network inputs. Back-propagation is performed with the desired response of (0 1). Then

the second K-tuple from the first Ho sample path. ((0, (0,2, C ,K)- is presented to the

network for back-propagation. Then the second K-tuple from the first Hi sample path,

(CL1 (02,"-, (,K). is presented to the network for back-propagation. When all the K -

tuples (of ordered adjacent samples) from the first sample path for H0 and H, have been

exhausted, the process is repeated for the remaining until they have all been exhausted.

Then the entire process Is repeated until all sample paths have been presented to the network

L times.

4.4 Determination of Thresholds a and b

The discriminators in Section 4.3 are trained to minimize the squared error of the desired

outputs. o and o° . under each hypothesis. In effect, the average slope of the path of the test

statistic is forced towards + 1 for HI and -I for H0. In this secuon we suggest a scheme

for determining practical values of the thresholds a and b. Intuitively. as the thresholds are

moved farther away from zero, the probabillUes of error decrease, while the average sample
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size increases. Therefore. by consuaining

b = -a > 0 (4.17)

to correspond to the largest of the desired a and 0 probably will not affect the performance

of the discriminator. this assumes that the desired values of a and # are small. We also

impose the following constraint on the maximum value of b:

b < B. (4.18)

We force our test to begin with TK -I = 0. By utilizing the training data and the neural

network discriminator, we generate the output data sequences

T,,j (4.19)

where i = 0, 1 denotes the hypothesis. m = 0, 1,.. M- 1 denotes the sample path number.

and where j K, K +..., N - 1 denotes the test statistic number. Define a new set of

functions e,(b) by

e (b) = O, if discriminator with thresholds -b and b chooses Hi for path T' (4.20)
1 I, otherwise.

Now using the functions eo(b), el(b),...,er- 1(b) and 0 1(b),e(b),..., 1(b) defie

M-I

M-Ii°(b) = -M E eo(b). (4.21)
M=O

Thus i'(b) is the average number of errors for thresholds -b and b under hypothesis Hi.

So. as M - oo we have

i°(b) - a(b)

75



01(b) -/1(b) (4.22)

where a(b) and O(b) are the probabilities of false alarm and miss respectively. Notice that

they are functions of the threshold b.

Since it is not possible to generate a continuous function on the computer. we can

simulate equations (4.20) and (4.21) with discrete bins or intervals. In this manner, reason-

able values of b (and -b) can be chosen to get desirable values of a and 3. Using equation

(4.21), we choose the value of b that satisfies the constraints

3 < 1 (x) for allx > b

a < °o(x)for all x > b. (4.23)

4.5 A Scheme for Multiple Hypothesis Discrimination

Generalizing the binary hypothesis neural network discriminator to a multiple hypothesis

discriminator can be achieved without much effort. Instead of two neural network out-

puts oO and ol. the neural network shall have R outputs. oo,ol,. 0R
-1. correspond-

ing to the R hypotheses Ho, H1,...,HR-1. The test statistic is now the vector T, =

Tl,..., T -1 )T. where

'I

T= E r(ZK-I+j, ZK-2+j,.. ., Z j )
j=K

(4.24)

= ZrI'.
.i=o

The nonlinearity P y, - 1 I T is formed by setting

7 0> fori = 0,1, .. ,R- 1. (4.25)
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Thus. each component of ri has a maximum value of 1. Instead of a two-threshold

test, the multiple hypothesis sequential test utilizes R thresholds a° , a, ,..., aR - . The test

proceeds as follows: Obtain a new data sample Zn. Form the new test statistic Tn. If

Tn' exceeds the other components of Tn by a margin of a'. then stop the test and declare

Hi. If no decisions are made for the sample Zn, the next sample. Zn+i is obtained. Tn is

computed, and the test is repeated. Once again. after the naximum number of samples. N.

has been reached, a block test is performed. The block test is performed by choosing the

hypothesis which satisfies

arg ruin- { a' - ( - F Tj (4.26)

Figure 4.9 depicts the structure of the multiple hypothesis sequential test.
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For O<_<R-I
check if any

a t <TL T kfor a,] bk Terminate test and choose
i S h hypothesis which satisfies:

If so. choose H

and terminate test.
Otherwise obtain new arg min k (T _ T
sample z O IR-1 Ia (T ik ) I

J+1 0 sO-kSR-1

and repeat test.

Jc.N
yes no

0 R-1

Neural Network

incoming
data D
sequence E4 (K-I)

Figure 4.9: Sequential Neural Network Discriminator for Multiple Hypotheses
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Case 2 Roynoiga 3 - 0.130290.

vs Rayleigh 0.013029

Case 3 Rayleigh 0 - 0.130290.
vs Rayleigh 0.013029

Table 4.1: Discrimination Cases

4.6 Numerical Results

In this section. the performance characteristics of the neural network discriminators are

evaluated. As in Section 2.7. the data used for evaluation of the neural network discrimi-

nators is simulated radar data. Table 4.1 summarizes the three data cases considered in

this section. Case 1 and Case 2 are identical to Case 1 and Case 2 from Section 2.7. A

new case. Case 3. Is also considered. Case 3 has Rayleigh pdfs under both H1 and H0 with

matched means and powers of the marginals. The decorrelation time constants are identical

to those of Case I and Case 2. Radar envelope samples { Zi 1 ?_0 are generated via computer

simulation by equations (2.52) through (2.55). Just as in Section 2.7.

Tables 4.2 through 4.4 summarize the neural networks simulated and trained to

operate in the discriminator structure of Figure 4.6. The first column contains the designated

net name. The second column lists the number of inputs (i.e. K). while columns three and

four list No and N1 respectively. Recall from Figures 4.7 and 4.8 that No and N1 . are the

number of nodes on layers 0 and 1. All of the neural networks listed in Tables 4.2 through
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4.4 have two outputs. The final column in Tables 4.2 through 4.4 contains the performance

measure. S5. which was estimated using the training data after completion of the training

phase.

All neural networks were trained using the back propagation algorithm and the train-

ing data with the method detailed In Section 4.3. The training data were also generated by

simulation using equations (2.52) through (2.55). The sample paths generated so that the

number of samples In each path. N. was 1000. The number of sample paths from each hy-

pothesis, M. was set to 50. The constants for the back propagation algorithm were chosen

by experimentation to get acceptable convergence rates. The gain was set to 0.001. while

the momentum was set to 0. Each sample path of the training data was presented to the

network 100 times. (that Is. using the notation of Section 4.3. L=100.) Since nets 4. 8. and

12 have three layers of nodes, we set L = 200 to allow for the expected slower convergence

rates associated with the additional layer.

Tables 4.5 through 4.7 summarize the results of the neural network discriminators.

The first column of each table contains the name of the neural network. The next two

columns contain the probability of false alarm and the probability of detection, respectively.

The next column contains the expected number of samples needed to make a decision. Each

discriminator was evaluated by simulating 10.000 sample paths from each hypothesis. The

probabilities of false alarm and detection were computed by dividing the number of false

alarms and correct detections. respectively, by 10.000. The expected number of samples. or

average sample number. was computed by averaging the number of samples needed to make

a decision for our test samplc paths. The thresholds a and b were chosen by experimentation.

not by the method of Section 4.4. Our second choice of the thresholds, a = -20 and b = 20.

were used in the simulations presented In this section.
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Net Inputs IVI
....... .' . .......

net 1 2 8 1 .612 E-06

net62 4 16 3 .25E-06

net 7 8 32 2.921 E-07

net 4 4 16 64 7.5660E-08

Table 4.2: Case 2L Neural Networks

... ...... .....

NtInputs NV~
S0 1

F2 8.652 E-06

ne -41 4.075 E-06

ne 84 664 I.0203E-06

Table 4.3: Case 3 Neural Networks
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0 5 10 15 20 25 30 35

Sample Number

Figure 4.10: Sample Paths from H1 and H0

Exam.n.ig the results .or Case 1 (see Table 4.5). we see that the discriminators

performe weil. All discriminators correctly classify all 20.000 sample paths. As the perfor-

mance measure S5 decreases from 1.014E-05 to 7.566E-08, the average sample number

decreases from 49 to 28. Figures 4.1I0 depIcts a typical sample path under hypotheses H1

and Ho, respectively. Figure 4.11 is the correspondig test statistic for the neural network

discriminator. Recall from Section 2.8 that the 128 level uniform quantlzer designed using

the nominal (Le. known, not estimated) cdfs had a measured probability of false alarm of 0. a

probability of detection of 0.9896. and an average sample number of 782. Clearly, the neural

network scheme works significantly better than the memoryless discriminator schemes.

82

. .............. ... ......... .............



30
Z ... .- ._.... ....... .Z....... . Z : .: .... .............

10. . . ........... ...... .................
o ............... ................ i. ........ ......... ............... ..... ............... ............

" "T............... ................ ...... p e D cso"b e h l .............. T S , I .......

-20

0 5 10 15 20 25 30 35
Test Statistic Number

Figure 4.11: Test Statistics from H1' and H0

Case 2 results are tabulated in Table 4.6. Most of the discrirminators for this case also

performed well. The discriminator using net 5 as Its nonlinearity, however, had a probability

of false alarm as high as 0.0997. One can see that the performance measure S5 for net 5 was

slightly higher than the performance measure for the other case 2 nets. The Case 2 data also

implies that smaller values of the performance measure Ss results in better performance

(in probabilities of error and/or average sample number.) Recall from Table 2.7 that the

performance for the optimal 128 level uniform quantizer discriminator had a probability of

false alarm of 0. a probability of detection of 0.9919. and an average sample number of 2660.

Comparing this with the average sample number of 43. and the perfect classification of the

net 7 discriminator, we can conclude that the neural network discriminators outperformed
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ne 2 7.59 E-06

Table 4.5: Performance of Case 1 Ne-ral Network Discriminators

.. .. . ..... .

.. .... ..d 5

net 5 0.0997 0.9999 132 8.652 E-06

net 6 0 1 55 4.075 E-06

net 7 0 1 43 3.982 E-07

net 8 0.0001 1 59 3.00 E-06

Table 4.6: Performance of Case 2 Neural Network Discriminators

p Ejn

net 9 0.9904 0.9999 1000 1.993 E-05

net 100141 402E6

net 12
ne71 0.4619 0.998659183E0

Table 4.7: Performance of Case 3 Neural Network Discriminators
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the quanter discriminators for Case 2.

Case 3 results are given In Table 4.7. Recall that Case 3 was Rayleigh vs Rayleigh case

with matched means and powers. Note that only the decorrelation times differed. Also note

that the quantizer discriminators from Chapter 2 could not be generated for this case because

the performance measure S3 is always zero. The discriminator with two inputs. net 9.

performed very poorly with its large probability of false alarm of 0.9904 and its large average

sample number of 1.000. However, we observe that this network had a large performance

measure. 54 = 1.993 E-05. On the other hand. the discriminators using nets 10 and 11.

with their perfect classifications and relatively small average sample numbers of 41 and 36.

respectively, performed very well. The discriminator using net 12 did not perform well. since

its performance measure of 1.893 E-05 was too large. Net 12 probably required more time

to converge during its training phase.

A neural network was also trained for the multi-hypothesis discrimination scheme.

The number of hypotheses, R. for this experiment was four. Table 4.8 summarizes the

four hypotheses. Hypothesis H0 had a Rayleigh pdf with decorrelation time of 0.013029

seconds. H, was lognormal with decorrelation time 0.13029 seconds. H, had a 0dB mean

ratio and a 0dB power ratio (HI vs HO). H 2 was Rayleigh with the same decorrelation time

as H 1. and had a 0dB power ratio (H2 vs HO). H3 is Rician with the same decorreation time

as HI, a mean ratio of 0dB and a 6dB power ratio (H3 vs H0). Training data was again

generated using equations (2.52) through (2.55) in a computer simulation. The Rician data

was created in a manner identical to Rayleigh data, except that the underlying Gaussian

processes had a nonzero mean. The number of sample paths. M. was set to 50 for this

experiment. while the maximum number of samples. N. was 2000. Training was performed

with the gain constant set to 0.001 and the momentum constant set to 0. The number of

85



presentations, L, was 300.

The multiple hypothesis discriminator was also evaluated via computer simulation.

Table 4.9 summarizes the performance of the multi-hypothesis experiment. Each row lists

the results for the 10.000 simulated sample paths from each hypothesis. The first column

lists the hypothesis number, the second column the number of decisions in favor of H0 , the

third the number of choices for HI, the fourth the number of choices for H 2. the fifth the

number of choices for H3, and the sixth column gives the average sample number for the

hypothesis listed in column one. The discriminator achelved over 94 percent correct deci-

sions under each hypothesis and an average sample number (averaged over all hypotheses)

of 266.

We have seen networks with various numbers of inputs. layers, and nodes perform

very well for our discrimination cases. We now consider the performance of a network with

fixed number of inputs and varying nodes. This will help to quantify our Uituitive belief that

more nodes in a neural network will allow a finer tuning of its decision regions. Table 4. 10

lists each neural network and the associated number of nodes on each level. Figure 4. 12 is a

graph of the performance measure S5 for each neural network in Table 4. 10. Each network

was trained with the Case 1 training data. For the back propagatic- algorithm. the gain

was 0.001 while the momentum was 0. Each sample path was presented during training

100 tines (Le.. L = 100.) The results shown In Figure 4.12 are intuitively pleasing since, as

the number of nodes increases (or number of levels for net f), we see that the performance

measure s decreases. This result is expected. as more nodes and levels will allow more

hyperplanes to be constructed in the decision space.

To see how the number of presentations. L. affects the performance measure S5 . an

experiment was performed with a two layer network with N0 set to 16. The network had two
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inputs, and was trained to operate on discrimination Case i. The gain term in the back-

propagation algorithm was set to 0.001. while the momentum term was 0. Figure 4.13 shows

the performance measure S5 as a function of L. the training cycle number. One can see that

the curve Is approximately a decaying exponential. At first there is pocr performance (large

values of Ss.) As L increases, the performance improves until it reaches a steady-state

minimum. This is expected since, as the number training cycles increases, the decision

region should converge to the optfnal decision region (optimal in the mean squared error

sense.)
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ILognormial 0 0 0.130290

12Rayleigh 0 0.130290

HRician 6 0 0.130290

Table 4.8: Hypotheses for a Multiple Hypothesis Discrimination Problem

H2 ~ ~~ H tr:10n4656 7

ISl true 1 0 316 9683 213

Table 4.9 Results for Multiple Hypothesis Discrimination Problem
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Fnet a 22

net d 2 16 ___

net e 2 32-

netf 2 4 16

Table 4.10: Node Distribution of Networks
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Chapter 5

Mismatch Performance
Results

The discriminators in the previous chapter were constructed with a priori Information in-

volving either known (or assumed) pdfs or training data. If training data were available, the

pdfs were either estimated to construct mremoryless quantizer discrirninstors., or the training

data was used by a neural network and the back-propagation training algorithm. In many

real situations the discriminators are presented with data whose statistics are different from

those on which the discriminator was designed to operate. This could be the result of making

invalid assumptions about the statistics or of obtaining a non-representative set of training

data which results in less accurate estimates of the pdfs. Therefore. the discriminator which

is chosen by the designer should be robust, that is, the discriminator should not be overly

sensitive to changes of the statistics of the data.

In this chapter the performance of our discriminators are evaluated under mismatch

conditions (mismatch meaning that the data have different statistics from the data for which

the discriminators were originally designed). Since there is an infinite number of possibili-

ties for the statistics of the testing data, we can only present some representative mismatch
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testla 0 00.01329.

testl0 Lonra 0 1 0.009vs .R..yl.ei..gh.

testl.c Lognrmal 0 0 0.013029.

vs Rayleigh 0109

testi.d Lognormal 0 0 0.60000,
vs Rayleigh 110000

Figure 5.1: Tests for Mismatch of Decorrelatlon Times

conditions. This mnismatch study k& certainly not a comprehensive study-, the cases con-

sidered, however, show some interesting characteristics of the performance of our different

discriminators under mismatch conditions.

5.1 Mismatch of Decorrelation Times

In this section we consider the performance of the discriminators under mismatch of the

decorrelation times ro and rl. Since ro and r, correspond to the correlation coefficients

po and pi. this is effectively a mismatch of the higher order pdfs. The marginal pdfs; for

these tests remain unchanged. Table 5.1 lists the discrimination tests for mismatch of

the decorrelation times T0 and T1. The misnmatch data for all four tests. (test l.a. testl1.b.

testl.c and testl-d). are lognormal versus Rayleigh with matched means and powers. The

underlying Gausslans for HO have variance equal to 4. The fourth columnn of Table 5.1 lists

the decorrelation times.
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The discriminators considered for these tests are the 128 level uniform quantizer

listed In Table 2.5. the 32 level uniform quantizer listed In Table 3.1. and the neural network

discriminator referred to as net 2 In Table 4.2. All of these discriminators were designed for

lognormal versus Rayleigh with match means and powers and (,r", T0 )= (0.13029.0.013029).

We see that test L.a just reverses the decorrelation times for which the discriminators

were designed. In testl.b. both decorrelation times are set to 0.13029. Both decorrelatlon

times for testl.c were 0.013029. while for testl.d both decorrelation times were 0.06.

100 sample paths from each hypothesis were generated accor-4)rg to the appropriate

distributions listed in Table 5.1 and presented to the discriminators. The sample paths

were generated in the same fashion as in previous chapters. Table 5.2 lists the computer

simulation results for testl.a. testl.b. testl.c and testl.d for the various discriminators.

Columns labeled P1 contain the measure probability of false alarm and columns labelled

Pd the probability of detection. Columns labelled with E[n] contain the average number of

samples required to make a decision.

The results for the quantizer discriminator from Chapter 2 (the memoryless quantizer

discrmlnatorfrom knomwn pdfs). performec well for all four tests. For all tests, the measured

probability of false alarm was less than 2 percent. while the probability of detection was

greater than 99 percent. The average sample size varied between 802 and 953. This Is still

reasonable compared to the results from Chapter 2. namely average s;rnple sizes of about

780 and similar probabilities of error.

The quantizer discriminator derived from the estimated pdfs did not perform well

for testl.a and testl.b; the probability of false alarm for testl.a and testl.b were 0.40. The

quantizer discriminator from estimated pdis had low error probabilities for test 1 .c. b"t a large

average sample number of 3437. For testl.d. the quantizer discriminator from estimated
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Memorylese guantizer Memoryless Quantizer Neural Network
Discriminator from Discriminator from Discriminator

Known pdfs Estimated pdfs

SPf""p.. Pd I f P fo d

testl.a 0.02 0.99 953 0.40 1 1527 0.94 0 167

testl.b 0.02 1 930 0.40 1 1304 0.92 1 98

testl.c 0 1 802 0.01 1 3437 0 0 32

testl.d 0 0.99 864 0.29 1 2347 0.23 1 85

Table 5.2: Results for Mismatch of Decorrelation Times

pdfs had a probability of false alarm of 0.29. a probability of detection of 1. and a average

sample number of 2347.

The neural network discriminator worked marginally well for test 1.d. but it performed

poorly fo- the other tests. For testl.a. its probability of false alarm (Le., the error probability

under H0) was 0.94: this corresponded with TO being mismatched. For testl.b. rO was also

very different from its nominal value, and the discriminator had a very high probability of

false alarm. For testl.c. Tl was very different from Its nominal value, and for this test the

probability of detection was 0 (Le.. the probability of error under H, was 1.) For testl.d. the

decorrelation times rO and r, were both at values midway between their nominal values: the

discriminator performed only marginally well with a low error probability under H, and a

probability of false alarm of 0.29.
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The results in this section imply that the memoryless quantizer discriminators derived

from known pdfs tend to discriminate using the marginal pdfs more heavily than the bivarlate

pdfs. This discriminator worked well for all four tests. The lognormal vs Rayleigh marginal

pfds of Case 1 produce the sharp increase in the quantizer function for large values of the

observed data sample (see Figure 2.3); this corresponds to the tails of the lognormal density

being larger than the tails of the Rayleigh density. For small values of the observed data

samples, the Rayleigh density values are much larger than the lognormal density value: this

produces a sharp drop in the quantization function for small values of the observed data

samples.

Apparently the memoryless quantzer discriminator derived from estimated pfds is

more dependent upon the bivariate pdfs than the memoryless quantizer discriminator de-

rived from known pdfs. This could be attributed to poor estimation accuracy of the marginal

and bivariates.

The neural network discriminator, however, performed poor for most of the tests.

This implies that the neural network discriminator places more emphasis on the higher

order pdfs than the memoryless quantizer discriminators. Since the memoryless quantizer

discriminators use only one observed data sample at a time when forming their test statistic

and since the data from these tests are correlated, one could expect the neural network

scheme with memory to perform better than the memoryless quantizer discriminators.
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test2.b Rayleigh 0 -0.130290,vs RayleMgh 0.013029

tst. Rayleigh 9.0309 - 0.130290. 1
vs Rayleigh 0.013029

1'~ 0 10 .03

test2.d Rayleigh 3 0.130290. 4

test2.e LogRonnal 0 0.130290, 4
vs Rayleigh 0.013029

test2.f Rayleigh 0 0.130290. 10
vs Rayleigh 0.013029

Table 5.3: Tsts for Mismatch of Marginal pdfs

5.2 Mismatch of Marginal pdfs

In this section, the values of r0 and rl remain unchanged. but the marginal pdfs are var-

led. This implies that the blvarlate pdfs are changed in shape, but the correlation between

samples Is unchanged. The same discriminators used in Section 5.1 are used for the results

presented in this section.

Table 5.3 lists the six tests used in this section. Figures 5.1 through 5.2 illustrate the

nominal and mismatch marginal pdfs used for each test. Table 5.4 contains the correspond-

ing discrimination results, which were obtained by simulating 100 sample paths under each

hypothesis and were generated in the same manner as previously.

The experiment test2.a used data from C -p 2 to evaluate our discriminators (which
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Memoryless guantizer Memoryless guantizer Neural Network
Discriminator from Discriminator from Discriminator

Known pd& Estmated pdfa

test2.a 0 0.29 866 0.04 0.91 4263 0 0.66 67

test2.b 0 0.01 1076 0.06 0.43 4049 0 0.94 55

test2.c 0 I 484 0 0.82 1505 0 0.70 67

test2.d 0 0.05 458 0 0.17 658 0 1 50

test2.e 0 1 411 0.01 0.28 3224 0 1 38

test2.t 0.35 0.46 1878 0 0.93 2084 0 0.67 67

Table 5.4: Results for Mismatch of Marginal pdfs

were designed for Case 1). Examining Figure 5. 1. we see that the actual pdf for H0 was

unchanged from the nominal one. but that the pdf for H, had larger variance and a peak

moved to larger values of x. The results (see Table 5.4) show that the memoryless quantizer

discriminator derived from the known pdfs performed very poorly. The memoryless quantizer

discriminator designed from estimates of the Case 1 pdfs had reasonable error probabliUes

(P = 0.04 and Pm = 0.09) but a very large average sample number of 4263. The neural

network discriminator had a probability of false alarm of 0. a probability of miss of 0.34. and

an average sample number of 67.
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network discriminator classified all H0 sample F Ahs correctly and classified 67 percent of

the H1 sample paths correctly.

Although the neural network discriminator did not perform better than the quantizer

discriminators in all cases, it showed itself to be less sensitive to changes n the marginal

pdfs. The quantlzer discriminators worked very weil for some these experiments but per-

formed very poorly for others. These results indicate that memoryless quantizer discrimi-

nators rely more heavily on marginal palfs while the neural network discriminators, which

have memory. rely on higher order pdfs - or correlation. These results are to be expected.
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Chapter 6

Conclusion

In the previous chapters various schemes for discrimination were considered. Quantization

functions were derived that maximize performance measures shown to b- useful in both

block and sequential discrimination schemes. In Chapter 2. by assuming the probability

densities of the data under each hypothesis. quantization functions were constructed for

use in discriminators. we consider this a parametric scheme, since pdfs were assumed.

In Chapter 3. non-parametric estimates of the marginal and bivarlate pdfs were obtained

from the training data by use of kernel density estimators. These pdfs were input to the

expressions for the optimal quantization functions in Chapter 2. The resulting quantiza-

ton functions were implemented In discriminators we refer to these memoryless quantizer

discriminators as non-parametric. In Chapter 4. another non-parametric scheme was con-

sidered. Multilayer perceptron neural networks were utilized to form the nonlinearities used

in the test statistic of discriminators. This scheme allowed for the design of discriminators

with memory without the requirements of knowledge or estimation of high order pdfs. The

neural network scheme utilized training data and the back-propagation training algorithm

to form a mean squared optimal non-parametric nonlinearity.
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.lhe memoryless quantizer discriminators in Chapter 2 performed reasonably well.

Their error probabilities were small (for enough quantization levels.) but their average sam-

ple numbers were high. These results indicate that more quantizatlon levels give better

performance. Puantzation functions with optimal breakpoints produced the same discrim-

ination performance as quantization functions with more quantization levels but uniform

breakpoints.

The kernel density estimators in Chapter 3 supported the consistency theory: results

of experiments that estimated marginal densities showed that larger sets of data resulted in

more accurate estimates. Since no theory was available for consistency of hight- order pdf

estimates for correlated observations, the consistency of bivariates was not checked. The

bivariate consistency was also not checked due to processing limitations. Estimation of the

sums of the bivariates described in Section 3.3 required as much as 3 days of cpu time on

a Convex-210 mini-super computer. !f the grid that the est.'mates were computed over were

made denser to result in more accurate quantization functions. much more processing time

would be required. Memoryless quantizer discriminators designed using the estimated pdfs

had reasonably low error probabilities but extremely high average sample numbers.

The discriminators with memory constructed using multi-layer perceptron neural

networks and the back-propagation algorithm performed very well. With training times on

the order of a few hours these neural network discriminators, for most experiments, had

probabilities of error which could not be measured (with 10.000 simulated sample paths)

and average sample numbers at least an order of magnitude smaller than the memoryless

quantizer discriminators. Experiments with the number of training cycles using the back-

propagation algorithm pleased our intuition- more training decreased the mean squared error

of the neural network outputs. Experiments with the number of nodes and layers were also
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pleasing intuitively more nodes on a layer decreased the mean squared error of the neural

network outputs. The addition of a third layer on the neural network further allowed the

back-propagation algorithm tofine tune the nonlinearity - thus reducing the mean squared

error.

The nonlinearity constructed by the neural network was generalized to operate in a

multiple hypothesis classification scheme. Simulation showed that the scheme could classify

four hypotheses with error probabilities less than 6 percent and an average sample number

of 266.

The use of neural networks as nonlinearities used in forming a test statistic certainly

merits further study. Topics that were not addressed in this thesis but might be explored

are how to set the training constants and how allocate the number of nodes and layers of the

perceptron network. Comparisons could be made between the neural network nonlinearities

and the optimal nonlinearities formed with knowledge of the high-order pdfs.

The mismatch results indicate that the memoryless quantizer discriminators are sen-

sitive to changes in the marginal pdfs. The neural network schemes were less sensitive to

changes in the marginal pdfs but more sensitive to changes in the higher order pdfs and cor-

relation. The addition of memory to the discriminator apparently explains this phenomena.

The robustness of neural network discriminators clearly deserves further study.
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Appendix A

Gradient Evaluation

The evaluation of the matrix is necessary for a gradient search technique to maximize

the performance measure with respect to the breakpoints, unless a finite difference gradient

computation Is used. If more accuracy than that of a finite difference gradient method

is desired, such as when it is expected that the P does not change slowly with varying

breakpoints t. then the gradient must be explicitly calculated. This appendix contains the

necessary equations for computation of the a matrix.

To compute O we employ Leibnitz's rule. For a joint cumulative distribution func-

tion Fxy(a, b) we have

/_b
Fxy(a, b) 1 J fxy(x, y)dxdy (A.1)

where fxy(z,y) is the probability density function associated with Fxy(a,b). For our

problem of finding optimal breakpoints and levels, we need to evaluate derivatives of the

form -Fxy(a,b). 8 Fxy(a,b). and & Fxy(c,c).
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Using Lelbnltz's rule 113) on FFxy(a, b) we get

0a b

rFx(a,b) = f 0_ fL x(z,Y)ddy

S __a g(b, x)dx

(A.2)"Q Oa 0-o

= J g(b,x)dx +g(b,a)a - g(b,-oo) - 0

g(b,a) bfxy(ay)dy

where g(b,x) is defined as

g(b,x) = 0 fxy(x, y)dy. (A.3)

In a similar manner it can be shown that

a a
-Fxy(a,b) = x~~bd (A.4)Loofxy(x, b)dz

and

T Fxy(cc) = - fxy(xc)dz + fxy(c y)dy. (A.5)

Now consider the nth column and lth row of the matrix P.
,~n,

(Pi) 2ZPri {Xi E ( t 1 -]i AND Xj+l E ( te-i,tt- ] (A.6)
j=1 A6

- (2mi + 1) [Fi(t,) - Fi(ti..l)] [Fi(tt) - Fi(te-0)].

We know that

Pri { Xi E ( t, I,tn I AND Xi+ E ( ttl,tt] }

FX IX+) (tn,tt) + FIXJx+ I(in-_i,t it ) (A.7)

- F"' 'x Il (tX_,, t).

110



This yields

=~ 2 Z{ F1I~X+l (tn, 4) + r "X1.+' 1 tte-)

~F)X '+' (t .it) X" + (t.,te 1 (A.8)

-(2mi + 1) IFidtn) -Fi(t&...)] [F1(ti) - it-)

So. applying equations (A.2) through (A.5) to the above expression for (P') njfor the vari-

ous values of n and 1. we get the following expressions:

Case 1: n,e 4k and n,154k+ 1

( i 0) (A.9)

Case 2. n = kj 0k,f96k+ I

(t )~t &k I I

- F, ' '' (tk,it..1) - F1 IX+ (tk..., tt)

2X + f (tX y. +0 -(tky)dy..-..0

-(2m 1 + 1) lF 1(tt) - F1(tu..i)l Fi(tik)

21 e ~~ (ik, 31)dy - (2m1 + 1) tFt(te) - Fi(t.. 1 )] fk(tk)



Case 3 : n = k+ i,tok,f# k + I

(21',' -L [2 ;J-Fp X+i (t~tt) + F ,X1+1 (tk, ti1)

-(2m 1 + 1) [Fidtk+1) - Fi(tk )I [Eitt) - Fi(t.. 1 )I]

-210 { /oM + eIx~jl ty - 0 - ti f.1X+(tkiy)dy}

3=1

-(2mg + 1) [Fi(te) - F(ti...)] I-fidtk)]

[F,(tt) - F~t1)f~k
(A. 11)

Case 4: n 5$ k,n 0- k + i,e = k

Tk Ot kj=1

= Z X.JIx~x-(2m + 1)(F,(tt,,) - Fi(tn-1)])1f,(tk)- it-)

M. t- -

2 f~~xj~ (X~k~dx+ 0- 0 e IX,+((X,12)d

1: t,112



Case 5: no~k,no#k + , = k +

([2~+ m=FX+ (ttkl + F,X'X14(tn-1, tk)

aF1X+(tlkk -t

=2Z{O ,+if IXi+ (, tk)dx -t fXl X+ t)dxo}

j+1 1

-2 Ez fXI-X1+1 (xtk)dx + (2m2 + 1) [Fi(tn) - Fi(tn.:I f,(tk)
j=1 tsI

(A.13)

Case 6: n =k,l k

&- 29A 2A , ' (tk,itk) + F '(tA: ,

-FlXX+(tk,ik-1) - F~l1Xi+1(tk-l,tk)}

-(2m, + 1) IFi(ik) - Fi(ik...)I EF(tk) - Fi(tk...)I

= 2Z Ln t fX IXI43(Xtk)dx +1t f I'' (tk,y)ay (.4

- 2(2mi + 1)fi(tk) [Fi(tk) - it-j

= 2ZFjJt, flxi~ X ,tk)dx + 10 I~ ~ltk~y)dy;

-2(2mi + 1)fi(ik) [F,(ik) - Fi(ik.1 )I
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Case 7: n =k +1,= k + 1

k+1,k+1

- (2m, + 1) [Fi(ik+l) -Fi(ti,)] [Fi(tk+l) - Fi(ikY]

2 t foth ~l~j~l(X, ik)dx + fth fX1XJ+l(tky)dy

- 2~{ Xl.i (A.15)

- jtk+1 f 'x1j+l (XI ik)dx - jtk(Xi)dx}

+ 2(2m, + 1)fi(tk) tFidtk+:) - Fi(tk)I

-221t fXl +(Xitk)dT+ "+f'xi+(tk~y)dy}

+ 2(2mg + 1)f,(tk) [FS(ik+1) - F1 (tk)]
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Case 8: n =k =k+1

([) JFk+ -,j~ ~-[~nax (tk, tk+l) + X+(klt)

- F,X+ (tk,tk) - FIXi+l (tt)}

- (2mg + 1) [Fi(tk;) -Fi(tk....)] [F(tk+l) Fi(tk)]]

- It it")y- jId f.XlXJ+ (Xtk)dx}

- (2mg + 1){1fi(ik) [Fi(tk+l) - Fi(tk)] - fi(tk) [Fi(tk) - Fi(tk...)]}

-(2m, + 1) [2 F,(tk) + Fi(tk+l) + FQtk..if

(A. 16)
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Case 9: n =k + ,t =k

(aA )- .. 2 EI.2~{ x ixj+1 (tk+ I tk) + F~l'xXi+1(tk,tk..)

('ik k+l,k= k

~FXX (tk+,tk...) - F,(1X+1(tk,tk)}I

-(2m, + 1) [Fi(tk+l) - Fi(tk)] [Fi(tk) - Fi(tk+l)]

=22 f{j f X1~+(tk)dx +j fX1 tJ+1y)dy (A.17)

- j0 t), IX, +I (z, tk)dx - jt& f xX+I (tky)dy}

- (2mg + l)fi(tk:) [2F2(tk) + Fi(tk+l) + Fi(tk-..1)]

=2Z ~ f~lxi +I (z,tk)dx - Fi:: xi+1i(k, ydyI

-(2m, + 1)fk(tk) [2Ft(tk) + Fi(tk+l) + Fi(tk-1)I
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Appendix B

Back-Propagation
Algorithm

The back-propagation is a training algorithm designed to minimize the mean square error

between the output of the perceptron neural network and the desired output of the network

for a given input vector. This is achieved via a gradient descent algorithm. One requirement

is that the nonlinearity is continuously differentiable. One commonly used continuously

differenttable nonlinearity is the sigmoid f(y) = . The back-propogation algorithm

given below assumes a sigrnoidal nonlinearity.

Step 1:

The weights and node offset values for all perceptrons in the network are initialized

to small random values.

Step 2:

The input vector from the training data. z = (Zo, Z1 ,... ZK.-1 )T, is presented as an

input to the perceptron neural network. The desired output of the neural network.

d = (do , dl,..., dm - )T. is also specified at this stage.
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Step 3:

The actual output of the network. o = (oG, o,... ,oM-)T . is computed by the

network in a feed forward manner.

Step 4:

Now the weights are adjusted. Starting at the output nodes and working down

towards the the first layer of nodes, the weights are adjusted by

w,,(t + 1) = wi(t) + t76jz' + a(wi(t) - wi,(t - 1)).

w,,(t) is the weight at time t from node i (or input i) to node j. z' is the output of

node i (or is input i.) 1 is a gain term such that 77 E (0, 1). a is a momentum term

such that , E (0, 1). And. 6i is an error term for node j. For an output node j.

, = oJ(1 - op)(dl - o7).

For an internal node j.

6, = X'(1 - z) Z kwjk
k

where k is over all nodes in the layers above node j. The node offset values are

adapted in a similar manner by assuming they are weights from constant valued

inputs.

Step 5:

Return to Step 2 and repeat the process for another training vector.
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Appendix C

Probability Density
Functions

The numerical results of Chapter 2 required kn, ,ledge of the marginal and bivariate cdfs

under each hypothesis. This appendix lists the expressions for the Rayleigh and lognormal

marginal pdfs and cdfs. The bivariate pdfs are listed, but the bivarlate cdfs are not. Bivariate

cdfs were obtained via a Simpson's integration of the bivariate pdfs.

The Rayleigh marginal pdf is given by

x 1x 2 \f(x) = - exp (C.1)

The constant a2 is the variance of the underlying Gaussian process. The Rayleigh marginal

cdf is obtained by integrating (C.1) and is given by

F(z)- 1-exp (_ ) . (C.2)

The Rayleigh bivariate pdf has the form

f(z,W)= a( 2 )exp 2)2 )Io{ ( Pz (C.3)
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In (C.3). p is the correlation coefficient between z and w. and Io(.) is the modified Bessel

function of the first kind. The Rayleigh bivariate cdf is obtained by a Simpson's integration

of the bivarlate pdf.

The lognormal marginal pdf is given by

1 (logx-1)2/ (C.4)f (x) = 72='rax exp 2a-2

Here again. o, is the variance of the underlying Gaussian process and ps is the mean of

underlying Gaussian process. By integration, the expression for the lognormal marginal cdf

is obtained as

F(x) = t( l ox )X ' (C.5)

where -t(.) is the normal distribution function defined as

@(z) = exp dt. (C.6)

The expression for the lognormal bivarlate pdf is given as

f(w,z) = 21rxp ( ogw - )2 + (logz- U)2

2p(log w - u)(log z -/1) (C.7)

Once again. p denotes the correlation coefficient between w and z. rlhe lognormal bivarlate

ods are obtained via Simpson's integration of the bivariate pdfs.

120



References

(11 H. Vantrees, Detection. Estimation and Modulation Theory, Part l, John Wiley & Sons.
New York. NY. 1968.

[21 H.V. Poor and J.B. Thomas. "Memoryless Discrete-tUme Detection of a Constant Signal
in m-dependent Noise." IEEE Trans. Information Theory. vol. IT-25. pp. 54-6 1. Jan
1979.

[31 -. °Memoxyless Quantizer-Detectors for Constant Signals in m-dependent Noise."
IEEE Trans. Information Theory, vol. IT-26. pp. 423-432. Jul 1980.

(41 SA. Kassam. *Optimum Quantization for Signal DetecUon." IEEE Trans. Commun-
cation Theory, vol. COM-25. pp. 479-484. May 1977.

[5] D.W. Sauder and E. GeranlotUs. "Optimal and Robust Memoryless Discrimination
from Dependent Observations." IEEE Trans. Information Theory. 1989. to appear.

161 E. Geranlotis. "Sequential Tests for Memoryless Discrimination from Dependent Ob-
servations - Part 1: Optimal Tests.* submitted to IEEE Trans. Information Theory.
1989. under review.

[71 A. Wald. Sequential Analysis. New York: John Wiley and Sons. 1947.

[81 B. L S. Prakasa Rao. Nonparametric Functional Estimation. Academic Press. New
York. NY. 1983.

191 E. Masry. "Probability Density Estimation from Sampled Data.' IEEE Trans. Informa-
tion Theory. vol. rT-29. pp.696-709. Sept 1983.

(101 D.W. Sauder and E. GeranioUs. 'Optimal One-Step Memory Nonlinearities for Sig-
nal Discrimination from Dependent Observations." appeared in Proceedings of 1990
Conference on Information Sciences and Systems. Princeton University. 1990.

(111 R Uppmann. "An Introduction to Computing with Neural Nets.' IEEE ASSP Magazine.
vol. 4. pp 4-22. April 1987.

(121 D.E. Rumelhart. G.E. Hinton. and R.J. Williams. "Learning Internal Representations
by Error Propagation' in D.E. Rumelhart & J.L McClelland (Eds.). Parallel Distributed

121



processing: Eploration in the Mcrostmcture of Cognition. VoL 1: Foundations.. MIT

Press, 1986.

1131 Osgood. Advanced Calculus. Macmlan. New York, NY. 1925.

122


